
Jumping in
!

❖ We are going to use R; but the basic design of programs (models) are similar across
many programming languages!

❖ Why R?!

❖ Free (and open source) software!

❖ Good (and getting better) visualization tools !

❖ Growing user community who make their R code available!

❖ (currently 2800+ user packages on CRAN R server)!

❖ Links with other tools and languages (GIS, Python, C, C++…)!

❖ Built in tools to deal with space and time!

❖ Lots of user support

R …

!

❖ Why not R?!

❖ Not particularly computationally efficient (e.g slow
for repetitive computations) ; hard to parallelize!

❖ Not the right tool for developing really complex
models (you don’t develop GCMs in R!)

Useful R Websites

❖ http://www.r-project.org/ (Main R site)!

❖ http://www.revolutionanalytics.com/ (Commercial version of R, but lots
of free stuff!

❖ http://spatial.ly/r/ (Using R with Spatial Data)!

❖ http://cran.r-project.org/doc/contrib/Short-refcard.pdf (really useful
reference card)!

❖ http://www.rdocumentation.org/ (a searchable database of R libraries)!

!

❖ There are many R tutorials out there - feel free to post your favorites on
Gauchospace

Reproducibility

❖ Start with tools that help you to organize your work!

❖ Keep track of changes that you make as you go (think
of track changes in “Word” GIT!

❖ Support collaboration and sharing with others GIT!

❖ Allow you to combine different tools, data formats,
output formats

What is GIT

❖ Version controls system: a way of keeping track of
changes to work that evolves through time!

❖ work can be data, programs, documents…anything!

❖ allows you to see what has changed and go back to
old versions if need - “back in time”!

❖ facilitate collaboration - manages multiple people
working on the same thing

Why	use	version	control?	
▪ Keep	track	of	your	own	change	to	code	
▪ Efficient	updating,	error	tracking	
▪ Multiple	people	working	on	a	project	
▪ User	A	makes	changes	to	a	particular	
part	of	the	project	

▪ User	B	also	makes	changes	to	the	same	
part	of	the	project	

▪ Git	allows	both	user	A	and	user	B	to	
upload	their	revisions	without	them	
overwriting	one	another	

▪ Both	revisions	can	be	merged	together	
without	losing	work	from	either	

git and github work together

git and github work together

❖ Git is local (on your machine) and keeps
track of your work!

❖ Github is on the web (it allows you to
share your work with others)!

❖ Rstudio supports the use of Git - and
linking your Git repository with the
github repository !

❖ BUT Git can be used outside of R! its
much bigger and can be used with many
programs - operating system commands

GitHub

What	is	GitHub?	
!
A	repository	for	an	open	source,	version	control	system	-	where	
developers	can	store	projects	and	network	with	others	
!
Allows	for	distributed,	collaborative	development	
!
Manages	and	stores	revisions	to	projects;		
!
Projects	can	be	code,	documents,	data	
Rmarkdown…pretty	much	anything	
		
!

A software developers view of Git

How you set things up

❖ You can now use Git with any code, data, documents!

❖ Can work with Git directly from github.com; or from shell
commands on unix based operating systems..or..!

❖ Rstudio makes git easier to use!

❖ In Rstudio - Git repositories are organized by Rstudio Projects!

❖ You can put any project into a directory that is already under version
control for some other reason (and use the Url for an existing
repository)!

❖ Or you can start from scratch - creating a new repository for your
project

Version control in R studio

❖ For Rstudio - !

❖ Rstudio provides an interface for common git
commands!

❖ You can also use a shell command in R to use other,
less common git command when you need them!

❖ We will start with using git in Rstudio; because its
easy but then move to the bigger ‘git’ word

Git and Rstudio

❖ Use for keeping track of!

❖ programs, Rscripts..RData files!

❖ data sets!

❖ Rmarkdown files (we will cover this later)

Git Basics

❖ use git:commit to enter your project to start !

❖ make a change to your work (Rscript for example)!

❖ use git:diff to see what you’ve changed!

!

❖ when you are happy with change…stage the changes
(click); use git:commit again to commit your new code!

❖ if your not happy with your new code…use git:revert to go
back to what you had before you started mucking about

Git Basics (in Rstudio)

❖ Got to an example - a few things to notice!

❖ you must save the file first before you can stage it!

❖ history (under git) will tell you what has changed with each commit!

❖ HEAD tells you where you are now (HEAD of the tree)!

❖ as you change a file its status is shown in the Git window!

❖ M - means you’ve changed your file!

❖ A - means you’ve added a file to the project!

❖ when you commit make sure your message is a useful one

Git and Branching

Branch, develop, release are commonly used names of branches !
Could be Sara, Experimental, or….

Git and Branching

!

❖ We can create a new branch to do experimental
development!

❖ create a new branch (whose parent is the current branch
“master”, call it “client”!

❖ to switch between branches ‘git checkout client’!

❖ checkout master !

❖ checkout -b client

Git and Rstudio: MERGING

!

❖ Ok lets say we; we want merge new modifications: into a
revised into our master branch!

❖ Convention uses the master branch as the “releasable” or
main version of the code!

❖ To merge “experimental” into “master”!

❖ set “master” as the current branch (git checkout)!

❖ use git merge revised

Git and Branching
❖ Work on an example!

❖ notice how you can see the source of the new branch!
❖ two reasons to branch!

❖ a part of your project that might look different (for a client) “client” and never
be merged back to master!

❖ a way for people to work on new ideas/development and then later bring it in
to the main project “naominew”!

❖ eventually merged back to master!
❖ useful to follow the following!

❖ git checkout naominew !
❖ git merge master #bring any changes that have happened to master into

your development work!
❖ make any needed fixes!
❖ git checkout master!
❖ git merge naominew #bring your new development into the main project

Git and Rstudio

❖ in the shell we access git commands as!

❖ git commit!

❖ git revert!

❖ git log (shows you the changes you’ve made)!

❖ git diff (shows you how the current files (not
committed yet) are different!

❖ git help (shows all git command)!

❖ git help command (show help for that git command)

Git Shell Commands
!
All	branches	associated	with	a	project	are	pulled	down	to	your	local	computer.	
To	see	what	branches	are	locally	available:	
	 git	branch	
The	active	branch	you	are	on	will	be	denoted	by	an	asterick	*	
!
To	see	all	branches,	including	remote	branches:	
	 git	branch	–all	
!
To	switch	to	a	particular	branch:	
	 git	checkout	branch_name	
!
To	create	your	own	feature	branch	off	of	an	existing	branch:	
	 git	checkout	–b	myfeaturebranchname	existingbranchname	
i.e.	
	 git	checkout	–b	MyFeature	develop	
This	creates	a	new	branch	called	MyFeature	off	of	the	existing	develop	branch,	and	switches	you	
into	this	new	branch.		
A	feature	branch	is	meant	to	exist	in	your	local	repository,	on	your	computer		
	 	

Git Shell Commands

!
To	add	a	file	to	your	local	repository:	
	 git	add	file_name	
!
To	change	the	name	of	a	file	(move):	
	 git	mv	
!
To	delete	files	(remove):	
	 git	rm	
!
Check	the	status	or	your	repository	–	this	will	list	what	files	have	been	modified	
since	the	last	commit,	and	list	any	files	not	currently	under	version	control	(i.e.	new	
files	you	have	created:	
	 git	status	

If you “muck” things up and want to go back

❖ before you commit: git revert (in Rstudio) or !

❖ after you commit!

❖ find where you want to go back: in shell!

❖ git log !

❖ git log —reverse!

❖ notice the number!

❖ git reset #commit # leaves changes as “staged” but not
‘committed’!

❖ git reset #commit —hard #gets rid of all changes

Code Development

❖ LOCAL!

❖ Design/Revise your branch!

❖ Test!

❖ Commit to your branch!

❖ Merge your branch with master (or other main branch)!

❖ LINK TO SHARED GIT REPOSITORY!

❖ Push - add your updates to remote repository!

❖ Pull - gets other peoples updates to your local repository

Git	Commands	
!
Git	commands	begin	with	git	
!
Download	code	from	GitHub	by	cloning	the	repository.		
!
For	example,	if	you	were	going	to	download	RHESSys	source	code	
from	the	Git	repository	hosted	on	GitHub:	
	 	
	 git	clone	https://github.com/RHESSys/RHESSys.git		rhessys_git	
!
This	would	‘copy’	the	RHESSys	source	code	hosted	at	that	web	
address	into	a	directory	on	your	local	computer	called	rhessys_git	
!
When	you	run	git	clone,	every	file	for	the	history	of	the	project	is	
pulled	down	by	default	–	and	it	automatically	creates	a	remote	
connection	called	origin	pointing	back	to	the	original	repository

1.	Create	GitHub	user	account	on	GitHub.com	
!
2.	Download	and	install	the	Git	program	on	your	local	computer	
!
3.	Configure	Git	with	your	user	information	
▪	User	name	–	this	can	be	any	name	you	want,	it	will	be	used	to	
credit	your	contributions	to	a	project	
▪	Use	the	email	you	used	to	sign	up	for	your	GitHub	account	
!
4.	Create	or	Clone	a	Git	repository	from	GitHub	to	your	local	
computer	
!
follow	commands	on		
https://help.github.com/articles/create-a-repo/	
http://r-pkgs.had.co.nz/git.html

Assignment
❖ With your group!

❖ Create a repository!

❖ signup for Github (all group members)!

❖ https://help.github.com/articles/create-a-repo/!

❖ just one for the group!

❖ together: generate a project in Rstudio to read, analyze, plot some kind of data that you find interesting!

❖ push this to the Github repository!

❖ individual: link to this repository!

❖ make some changes to the Master branch - upload to github!

❖ make your own branch - upload to github!

❖ merge your branch with master - and upload to github!

❖ make a changes to someone else's branch - upload to github!

❖ Turn in the link to your repository and a brief description (3-4 sentences) as an Rmarkdown file*!

❖ *we will explain this shortly

