Jumping in

+ We are going to use R; but the basic design of programs (models) are similar across
many programming languages

* Why R?
* Free (and open source) software
* Good (and getting better) visualization tools
* Growing user community who make their R code available
“ (currently 2800+ user packages on CRAN R server)
« Links with other tools and languages (GIS, Python, C, C++...)
+ Built in tools to deal with space and time

* Lots of user support

+ Why not R?

* Not particularly computationally efficient (e.g slow
for repetitive computations) ; hard to parallelize

* Not the right tool for developing really complex
models (you don’t develop GCMs in R!)

Useful R Websites

« http:/ /www.r-project.org/ (Main R site)

« http:/ /www.revolutionanalytics.com/ (Commercial version of R, but lots
of free stutf

« http:/ /spatial.ly/r/ (Using R with Spatial Data)

« http:/ / cran.r-project.org /doc/ contrib / Short-refcard.pdf (really useful
reference card)

« http:/ /www.rdocumentation.org/ (a searchable database of R libraries)

* There are many R tutorials out there - feel free to post your favorites on
Gauchospace

Reproducibility

* Start with tools that help you to organize your work

« Keep track of changes that you make as you go (think
of track changes in “Word” GIT

* Support collaboration and sharing with others GIT

“ Allow you to combine different tools, data formats,
output formats

What1s GIT

* Version controls system: a way of keeping track ot
changes to work that evolves through time

* work can be data, programs, documents...anything

» allows you to see what has changed and go back to
old versions if need - “back in time”

« facilitate collaboration - manages multiple people
working on the same thing

Why use version control?

Keep track of your own change to code
Efficient updating, error tracking
Multiple people working on a project
User A makes changes to a particular
part of the project

User B also makes changes to the same
part of the project

Git allows both user A and user B to
upload their revisions without them
overwriting one another

Both revisions can be merged together
without losing work from either

Giraffe Jean adds Tigraffe Sam adds Peatigraffe

GitHub Flow

Master

Feature
branches

Network Connection

Central
Repository

‘—

commit [7&‘- K \
% pU" " '\
/E L | . ', Local

o~

- pull] eull

“ s =
commit é E} commit
updat: update
£ V__ |

I l/"--__

git and github work together

git github

SOCIAL CODING

git and github work together

+ Git is local (on your machine) and keeps
track of your work

« Github is on the web (it allows you to
share your work with others)

SOCIAL CODING

+ Rstudio supports the use of Git - and
linking your Git repository with the
github repository

BUT Git can be used outside of R! its
much bigger and can be used with many
programs - operating system commands

GitHub

What is GitHub?

A repository for an open source, version control system - where
developers can store projects and network with others

Allows for distributed, collaborative development

Manages and stores revisions to projects;

Projects can be code, documents, data
Rmarkdown...pretty much anything ——

l_I_l

FRED DAVE LlSA

e L& T

A software developers view of Git

Tag Author: Vincent Driessen
0.1 Original blog post: http://nvie.com/archives/323
H License: Creative Commons

master

-0 >O >O S
hotfixes \
release Incorporate
branches bugfix in . >Q->0->0

develop

e A

Major
foatiiTe feature for

branches next

e’/

release

n Iime

—

How you set things up

* You can now use Git with any code, data, documents

Can work with Git directly from github.com; or from shell
commands on unix based operating systems..or..

» Rstudio makes git easier to use
* In Rstudio - Git repositories are organized by Rstudio Projects

* You can put any project into a directory that is already under version
control for some other reason (and use the Url for an existing
repository)

Or you can start from scratch - creating a new repository for your
project

Version control in R studio

+ For Rstudio -

* Rstudio provides an interface for common git
commands

* You can also use a shell command in R to use other,
less common git command when you need them

= We will start with using git in Rstudio; because its
easy but then move to the bigger ‘git” word

Git and Rstudio

+ Use for keeping track of
“ programs, Rscripts..RData files
“ data sets

* Rmarkdown files (we will cover this later)

Git Basics

+ use git:commit to enter your project to start

» make a change to your work (Rscript for example)

« use git:diff to see what you’ve changed

* when you are happy with change...stage the changes
(click); use git:commit again to commit your new code

« if your not happy with your new code...use git:revert to go
back to what you had before you started mucking about

Local Operations

working staging
directory area

Git Basics (in Rstudio)

* Got to an example - a few things to notice

* you must save the file first before you can stage it

* history (under git) will tell you what has changed with each commit
» HEAD tells you where you are now (HEAD of the tree)

“ as you change a file its status is shown in the Git window
* M - means you’ve changed your file
* A -means you've added a file to the project

* when you commit make sure your message is a useful one

Git and Branching

O=merge Q=commit

Ta:Als
130is / 1.3.1is out out with /
out! and even more feature xxx
stable! and more!
release

let's fetch let's fetch
release fetch bugfixes release bugfix
130 bugfix 140
develop '

OO OO OO~~~

xxx 18 ready,
feature/xxx L

Branch, develop, release are commonly used names of branches
Could be Sara, Experimental, or....

master

Git and Branching

* We can create a new branch to do experimental
development

« create a new branch (whose parent is the current branch
“master eallit elient”

* to switch between branches ‘git checkout client’
+ checkout master

+ checkout -b client

Git and Rstudio: MERGING

+ Ok lets say we; we want merge new modifications: into a

revised into our master branch

+ Convention uses the master branch as the “releasable” or

main version of the code
» To merge “experimental” into “master”
« set “master” as the current branch (git checkout)

“ use git merge revised

O =merge O =commit

14018
130is 1.3.1 s out out with
out! and even more feature xxx
stable! and more!
release
let's fetch let's fetch
release fetch bugfixes release bugfix
13.0 bugfix 140
d

master

evelop - - - -
Xxx Is ready,
integrate it

feature/xxx

Giraffe Jean adds Tigraffe Sam adds Peatigraffe
tiger head peacock feathers

Git and Branching

+ Work on an example
* notice how you can see the source of the new branch
* two reasons to branch

+ a part of your project that might look different (for a client) “client” and never
be merged back to master

* a way for people to work on new ideas/development and then later bring it in
to the main project “naominew”

» eventually merged back to master
+ useful to follow the following
+ git checkout naominew

* git merge master #bring any changes that have happened to master into
your development work

* make any needed fixes
+ git checkout master

+ git merge naominew #bring your new development into the main project

Git and Rstudio

* in the shell we access git commands as

“ g1t commit

+ g1l revert

= git log (shows you the changes you've made)

= qit diff (shows you how the current files (not
committed yet) are different

« qit help (shows all git command)

« git help command (show help for that git command)

Git Shell Commands

All branches associated with a project are pulled down to your local computer.
To see what branches are locally available:

git branch
The active branch you are on will be denoted by an asterick *

To see all branches, including remote branches:
git branch —all

To switch to a particular branch:
git checkout branch_name

To create your own feature branch off of an existing branch:
git checkout —b myfeaturebranchname existingbranchname
l.e.
git checkout —b MyFeature develop
This creates a new branch called MyFeature off of the existing develop branch, and switches you
into this new branch.
A feature branch is meant to exist in your local repository, on your computer

Git Shell Commands

To add a file to your local repository:
git add file_name

To change the name of a file (move):
git mv

To delete files (remove):
gitrm

Check the status or your repository — this will list what files have been modified
since the last commit, and list any files not currently under version control (i.e. new
files you have created:

git status

If'you "muck™ things up and want to go back

« before you commit: git revert (in Rstudio) or
“ after you commit
+ find where you want to go back: in shell
= git log
+ git log —reverse
* notice the number

« git reset #commit # leaves changes as “staged” but not
‘committed’

+ git reset #commit —hard #gets rid of all changes

O =merge O =commit

140is
130is 1.3.1 s out out with
out! and even more feature xxx
stable! and more!
release
let's fetch let's fetch
release fetch bugfixes release bugfix
13.0 bugfix 140
d

master

evelop - - - -
Xxx Is ready,
integrate it

feature/xxx

Giraffe Jean adds Tigraffe Sam adds Peatigraffe
tiger head peacock feathers

Code Development

= LTOCAL

+ Design/Revise your branch

+ Test

Commit to your branch

+ Merge your branch with master (or other main branch)

= LINK TO SHARED GIT REPOSITORY

* Push - add your updates to remote repository

« Pull - gets other peoples updates to your local repository

f—_ e

|
@oa'w=r.ﬁ?= — | oo
|
dona . — Pull request
e

hcal

.

53 plak

(branch)
Edits
Qqitv add

gi% commit gi% remote add

Giraffe Jean adds Tigraffe Sam adds Peatigraffe
tiger head peacock feathers

Git Commands

Git commands begin with git
Download code from GitHub by cloning the repository.

For example, if you were going to download RHESSys source code
from the Git repository hosted on GitHub:

git clone https://github.com/RHESSys/RHESSys.git rhessys git

This would ‘copy’ the RHESSys source code hosted at that web
address into a directory on your local computer called rhessys_git

When you run git clone, every file for the history of the project is
pulled down by default — and it automatically creates a remote
connection called origin pointing back to the original repository

1. Create GitHub user account on GitHub.com
2. Download and install the Git program on your local computer

3. Configure Git with your user information
= User name — this can be any name you want, it will be used to
credit your contributions to a project
= Use the email you used to sign up for your GitHub account

4. Create or Clone a Git repository from GitHub to your local
computer

follow commands on
https://help.github.com/articles/create-a-repo/
http://r-pkegs.had.co.nz/git.html

Assignment

+ With your group
+ Create a repository
+ signup for Github (all group members)

« https:/ /help.github.com/articles/ create-a-repo/

“# just one for the group
+ together: generate a project in Rstudio to read, analyze, plot some kind of data that you find interesting
« push this to the Github repository
+ individual: link to this repository
+ make some changes to the Master branch - upload to github
+ make your own branch - upload to github
+ merge your branch with master - and upload to github
+ make a changes to someone else's branch - upload to github
+ Turn in the link to your repository and a brief description (3-4 sentences) as an Rmarkdown file*

+ *we will explain this shortly

