Programing fundamentals

+ A program is a set of instructions for a computer to follow

* Programs are often used to manipulate data (in all type and
formats you discussed last week)

« Simple to complex

* the scripts you wrote last week (simple)

* instructions to analyze relationships in census data and
visualize them

* amodel of global climate

Programing fundamentals

“ Programs can be written in many ditferent languages
(all have their strengths and weakness)

* Languages expect instructions in a particular form
(syntax) and then translate them to be readable by the
computer

* Languages have evolved to make it help users write
programs that are easy to understand, re-use, extend,
test, run quickly, use lots of data...

Programing fundamentals

« Operations (=,+,-,...concatenate, copy)
« Data structures (simple variables, arrays, lists...)

« Control structures (if then, loops)

+ Modules...

Concepts common to all languages through the syntax
may be different

Modularity

Main controls the overall flow of
program- calls to the functions/
modules/building blocks

«1

Functions - the
modules/boxes

* A program is often multiple pieces put together

* These pieces or modules can be used multiple times

Programing fundamentals

+ Modularity
+ breaking your instructions down into individual pieces
+ identifying instructions that can be reused

* an ecosystem model might re-use instructions for calculating how a species
grows

an accounting program might re-use instructions for computing net present
value from interest rates

» modules often become “black boxes” which hides detail that might make
understanding the program overly complex

» most languages have lots of black boxes already written and most allow you to
write your own

Best practices for software development

+ Read: Wilson G, Aruliah DA, Brown CT, Chue Hong NP,
Davis M, et al. (2014) Best Practices for Scientific Computing.
PLoS Biol 12(1): €1001745. d0i:10.1371 /journal.pbio.1001745

» Blanton, B and Lenhardt, C 2014. A Scientist’s Perspective

on Sustainable Scientific Software. Journal of Open Research
Software 2(1):e17, DOI: http:/ /dx.doi.org/10.5334 /jors.ba

+ but also

« http:/ /simpleprogrammer.com /2013/02 /17 / principles-are-
timeless-best-practices-are-fads /

http://simpleprogrammer.com/2013/02/17/principles-are-timeless-best-practices-are-fads/

Programing fundamentals

Box 1. Summary of Best Practices

1. Write programs for people, not computers.

(a) A program should not require its readers to hold more
than a handful of facts in memory at once.

(b) Make names consistent, distinctive, and meaningful.
(c) Make code style and formatting consistent.

2. Let the computer do the work.

(a) Make the computer repeat tasks.
(b) Save recent commands in a file for re-use.

(c) Use a build tool to automate workflows.

3. Make incremental changes.

(a) Work in small steps with frequent feedback and course
correction.

(b) Use a version control system.

(c) Put everything that has been created manually in version
control.

4. Don’t repeat yourself (or others).

(a) Every piece of data must have a single authoritative
representation in the system.

(b) Modularize code rather than copying and pasting.
(c) Re-use code instead of rewriting it.

5. Plan for mistakes.

(a) Add assertions to programs to check their operation
(b) Use an off-the-shelf unit testing library.

(c) Turn bugs into test cases.

(d) Use a symbolic debugger.

6. Optimize software only after it works correctly.

(a) Use a profiler to identify bottlenecks.
(b) Write code in the highest-level language possible.

7. Document design and purpose, not mechanics.

(a) Document interfaces and reasons, not implementati

(b) Refactor code in preference to explaining how it we

(c) Embed the documentation for a piece of software i
software.

8. Collaborate.

(a) Use pre-merge code reviews.

(b) Use pair programming when bringing someone new
speed and when tackling particularly tricky problem

() Use an issue tracking tool.

Best practices for model (software) development

Common problems

* Unreadable code (hard to understand, easy to forget
how it works, hard to find errors, hard to expand)

* Overly complex, disorganized code (hard to find errors;
hard to modify-expand)

* Insufficient testing (both during development and after)

* Not tracking code changes (multiple versions, which is
correct?)

Steps for building model

* We are going to use R; but the basic design of programs are similar across many
programming languages

* Why R?
* Free (and open source) software
* Good (and getting better) visualization tools
* Growing user community who make their R code available
(currently 2800+ user packages on CRAN R server)
« Links with other tools and languages (GIS, Python, C, C++...)
Built in tools to deal with space and time

* Lots of user support

Steps for building model

+ Why not R?

* Not particularly computationally efficient (e.g slow
for repetitive computations) ; hard to parallelize

* Not the right tool for developing really complex
models (you don’t develop GCMs in R!)

STEPS: Program Design

. Clearly define your goal as precisely as possible,
what do you want your program to do

1. inputs/parameters
2. outputs

. Implement and document

. Jest

. Refine

Steps for building a

module

Module

Design the program “conceptually” - “on paper” in words or figures
Translate into a step by step representation

Choose programming language

Define inputs (data type, units)

Define output (data type, units)

Define structure

Write program

Document the program

. Test the program

10. Refine...

O 0 N O RO

Best practices for model (software) development

* Let us change our traditional attitude to the construction of
programs: Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate rather on
explaining to humans what we want the computer to do. --
Donald E. Knuth, Literate Programming, 1984

* Developing readable (by PEOPLE) code and documenting
what you are doing is essential

* “When was the last time you spent a pleasant evening in a
comfortable chair, reading a good program?”— Bentley (1986)

Best practices for software development

+ Automated tools (useful for more complex code development

+ (note that GP’s often create programs > 100 lines of code)

+ Automated documentation

« http:/ /www.stack.nl/ ~dimitri/doxygen/

+ http:/ /roxygen.org/roxygen2-manual.pdf

+ Automated test case development

« http:/ /r-pkgs.had.co.nz/tests.html

+ Automated code evolution tracking (Version Control)

« https:/ / github.com/

http://www.stack.nl/~dimitri/doxygen/
http://roxygen.org/roxygen2-manual.pdf
http://r-pkgs.had.co.nz/tests.html
https://github.com/

Designing Programs

+ Inputs - sometimes separated into input data and parameters
» input data = the “what” that is manipulated
« parameters determine “how” the manipulation is done
» “sort -n file.txt”
» sort is the program - set of instructions - its a black box
» input is file.txt
+ parameters is -n
» output is a sorted version of file.txt
+ my iphone app for calculating car mileage
« inputs are gallons and odometer readings at each fill up
« graph of is miles/gallon over time

« parameters control units (could be km/liter, output couple be presented as a graph or an
average value)

Designing Programs
+ What’s in the box (the program itself) that gives you a
relationship between outputs and inputs

« the link between inputs and output

« breaks this down into bite-sized steps or calls to other
boxes)

+ think of programs as made up building blocks

+ the design of this set of sets should be easy to follow

Building Blocks

Instructions inside the building blocks/box
* Numeric data operators
AR
+ Strings
* substr, paste..
« Math
+ sIn, COS, exp, min, max...
* these are themselves programs - boxes

+ R-reference card is useful!

Best practices for software development

* Structured practices that ensures
+ clear, readable code

* modularity (organized “independent” building
blocks)

* testing as you go and after

+ code evolution is documented

Building Blocks

* Functions (or objects or subroutines)!
* The basic building blocks

“ Functions can be written in all languages; in many languages
(object-oriented) like C++, Python, functions are also objects

+ Functions are the “box” of the model - the transfer function

that takes inputs and returns outputs

* More complex models - made up of multiple functions; and
nested functions (functions that call /user other functions)

Functions in R

+ Format for a basic function in R

#” documentation that describes inputs, outputs and what the function does
FUNCTION NAME = function(inputs, parameters) {
body of the function (manipulation of inputs)

return(values to return)

}

In R, inputs and parameters are treated the same; but it is useful to think about them separately in
designing the model - collectively they are sometimes referred to as arguments

ALWAYS USE Meaningful names for your function, its parameters and variables calculated within the
function

A simple program: Example

» Input: Reservoir height and flow rate

* Qutput: Instantaneous power generation (W /s)

* Parameters: Kgggency, O (density of water), g (acceleration due to gravity)
oo K

P is Power in watts, g is the density of water (~1000 kg/m3), h is height in
meters, 1 is flow rate in cubic meters per second, g is acceleration due to
gravity of 9.8 m/s2, Kétficiency 18 @ coefficient of efficiency ranging from 0 to 1.

Building Models

Example (power_gen.R)

power_gen = function(height, flow, rho=1000, g=9.8, Keff=0.8) {

result = rho * height x flow *x g * Keff
return(result)

}

Building Models

* Inputs/parameters are height, flow, rho, g, and K

* For some (particularly parameters) we provide default values by
assigning them a value (e.g Keff = 0.8), but we can overwrite these

* Body is the equations between { and }

« return tells R what the output is

power_gen = function(height, flow, rho=1000, g=9.8, Keff=0.8) {

result = rho % height x flow *x g * Keff
return(result)

}

Building Models: Using the model

> power_gen(20,1)

[1] 156800

> power_gen(height=20, flow=1)

[1] 156800

> power.guess = power_gen(height=20, flow=1)
> pOwer.guess

[1] 156800

> power.guess = power_gen(flow=1, height=20)
> pOower.guess

[1] 156800

Arguments to the function follow the order they are listed in your definition
Or you can specify which argument you are referring to when you call the program

power_gen = function(height, flow, rho=1000, g=9.8, K=0.8) {

calculate power
result = rho * height *x flow *x g *x K
return(result)

}

Building Models

“ Always write your function in a text editor and then copy into R

* By convention we name files with functions in them by the
name of the function.R

* s0 power_gen.R

“ you can also have R read a text file by source(“power_gen.R”) -
make sure you are in the right working directory

* Hventually we will want our function to be part of a package (a
library of many functions) - to create a package you must use
this convention (name.R)

Building Models: Using the model

> power_gen(height=20, flow=1)

[1] 156800

> power_gen(height=20, flow=1, Keff=0.8)
[1] 156800

> power_gen(Cheight=20, flow=1, Keff=0.5)
[1] 980020

> power_gen(Cheight=10, flow=1, Keff=0.5)
[1] 49000

Defaults take the value they were assigned in the definition,
but can be overwritten

power_gen = function(height, flow, rho=1000, g=9.8, K=0.8) {

calculate power
result = rho * height *x flow *x g *x K
return(result)

}

Scoping

The scope of a variable in a program defines where it can be “seen”
Variables defined inside a function cannot be “seen” outside of that function

There are advantages to this - the interior of the building block does not ‘interfere” with other
parts of the program

> power_gen
function(height, flow, tho=1000, g=9.8, K=0.8) {

calculate power
result = rho * height * flow * g * K
return(result)

}

> result

Error: object 'result’ not found

> K

Error: object 'K' not found

>

One of the equations used to compute automobile fuel efficiency is as follows this is
the power required to keep a car moving at a given speed

Pb = Crolling *m *g*V +1/2 A*pair*cdrag*v3

where Crolling and Cdrag are rolling and aerodynamic resistive
coetficients, typical values are 0.015 and 0.3, respectively.

V: is vehicle speed (assuming no headwind) in m/s (or mps)
m: is vehicle mass in kg

A is surface area of car (m2)

g: is acceleration due to gravity (9.8 m/s2)

Pair = density of air (1.2kg/m3)

Pb is power in Watts

Write a function to compute power, given a truck of m=31752 kg (parameters for a
heavy truck) for a range of different highway speeds

plot power as a function of speed

how does the curve change for a lighter vehicle

Note that Imph=0.477m/s

Simple Functions

Note that we can use vectors (list of numbers) in
addition to single numbers as inputs - see use of “v”

power = function(cdrag=0.3, crolling=0.015,pair=1.2,9=9.8,V,m,A) {
P = crollingxmxgxV + 1/2%Axpairkcdrag*V*x3
return(P)

}

v=seq(from=0, to=100, by=10)
plot(v, power(V=0.447xv, m=31752, A=25))
lines(v, power(V=0.447xv, m=61752, A=25))

Simple Functions

#' Power Required by Speed

#I

#' This function determines the power required to keep a vehicle moving
at

#' a given speed

#' @param cdrag coefficient due to drag default=0.3

#' @param crolling coefficient due to rolling/friction default=0.015
#' @param v vehicle speed (m/2)

#' @param m vehicle mass (kg)

#' @param A area of front of vehicle (m2)

#' @param g acceleration due to gravity (m/s) default=9.8

#' @param pair (kg/m3) default =1.2

#' @return power (W)

power = function(cdrag=0.3, crolling=0.015,pair=1.2,9=9.8,V,m,A) {
P = crollingxmxgxV + 1/2%Axpairkcdrag*V*x3
return(P)

}

v=seq(from=0, to=100, by=10)
plot(v, power(V=0.447xv, m=31752, A=25))
lines(v, power(V=0.447xv, m=61752, A=25))

Key Programming concepts: Review of data types

Understanding data types is important for designing your model 1/ O;
specifying what the model will do

+ Data types and data structures are necessary for creating more complex inputs
and outputs

+ All programming languages have sets of data types
« single values: character, integer, real, logical /boolean (Y /N)
+ data structures: arrays, vectors, matrices,

* in R core types; dataframes, lists, factors

+ in R defined types: spatial, date...

, space, conditions

time

Complex data

ions

teract

ir in

and the

1 r

‘vmam |

igning

A core issue in modeling (both des

and using) are the data structures/formats
used to hold data that is input and output

In good programs, data

structures support organization and
program flow and readability

from programs

Building Programs

Key Programming concepts: Data types and structures

+ Good data structures are:
“ as simple as possible
* easy understand (readable names, and sub-names)

* easy to manipulate (matrix operations, applying
operations by category)

* easy to visualize (graphs and other display)

Key Programming concepts: Review of data types

+ Vectors - a 1-dimensional set of numbers

o2 I I C(1,5,8, 4, 22,33)

* Matrix - a 2-dimensional set of numbers (organized in
rows and columns)

o — g fi(a niopy—2 ncel=35)

>a = c(1,5,8, 4, 22,33)
>
> b = matrix(a, nrow=2, ncol=3)
> a
[1] 1 5 8 4 22 33
> b
[,11 [,2]1 [,3]
[1,] 1 8 22
[2,] 5 4 33

Key Programming concepts: Review of data types

“ You can also define an “empty” matrix to fill values in
later

« think of creating a data structure to store energy
production in winter and summer for 6 different power
plants)

* res = matrix(nrow=2, ncol=6)

| = 7 ol

> res = matrix(nrow=2, ncol=6)
> res

[,11 [,2] [,31 [,4]1 [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] NA NA NA NA NA NA

>

Key Programming concepts: Review of data types

“ You can combine vectors into a matrix using
“ cbind by columns

“ rbind by rows

Key Programming concepts: Review of data types

“ A really useful data structure in R is a data frame

« Dataframe’s are like matrices = they have rows and
columns but they don’t have to be numeric (although
they can be)

« Useful if you have data that is of mixed type

Data Frame Creation Example

We often want to “create™ data to explore ideas/function behavior

mth.names = c("Jan","Feb", "Mar","Apr", "May",
"Jun" , "Ju'l-" , I|Aug" , "Sep" , "OCt" , "NOV" , "Dec")

reservoir.operation = data.frame(month=mth.names)

VV VYV 4+ VY

reservoir.operation
month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
® Oct
11 Nov
12 Dec

P Ooco~NOOULT P WN B

Data Frame Creation Example

>
>

> reservoir.operation$height = c(seq(from=22,t0=10, by=-2), seq(from=12,to=20,

by=2))
> #reservoir.operation$height = ¢(20,18,16,14,12,10,12,14,16,18,20)

>

>
>
>

Ooo~NOOULT A WN B

reservoir.operation$flowrate =

reservoir.operation
month height

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

22
20
18
16
14
12
10
12
14
16
18
20

flowrate

~N

N WWNWNWNWNN

.967183
.923782
. 891444
.048090
.598533
.027024
. 906364
.460389
.965138
. 320663
. 300340
.916503

rnorm(n=12, mean=3, sd=0.25)

Adding columns

seq - a sequence of number from to by
rnorm - generate, n numbers from a normal distribution
with a given mean and standard deviation

Key Programming concepts: Review of data types

« Of course we can use matrices/data frames as inputs/
output for our models

“ Example using our power_gen model from earlier -
using vectors instead of single values

>
>

> power_gen(height=reservoir.operation$height, flow=reservoir.operation$flow)
[1] 511779.6 458449.1 408040.5 382352.4 285215.0 284782.4 227858.9 325553.4
[9] 325453.5 416544.0 465744.0 457307.7
> power_gen
function (height, flow, rho = 1000, g = 9.8, Keff = 0.8)
{
result = rho * height * flow * g * Keff
return(result)

3

Key Programming concepts: Review of data types
* Why does this work?

« Because height, flow columns are both from

reservoir.operation (a data frame) so they are vectors of
the SAME length

R/
0‘0

So when you multiply height* flow, you multiply
« height[1]*flow[1],,, and then height[2]*flow][2] etc

>
>

> power_gen(Cheight=reservoir.operation$height, flow=reservoir.operation$flow)
[1] 511779.6 458449.1 408040.5 382352.4 285215.0 284782.4 227858.9 325553.4
[9] 325453.5 416544.0 465744.0 457307.7
> power_gen
function (height, flow, rho = 1000, g = 9.8, Keff = 0.8)
{
result = rho * height * flow * g * Keff
return(result)

3

Key Programming concepts: Review of data types

* Matrix multiplication is ditferent

¢ in R, this would be

K .. m
AL [&

Y

* Matrix multiplication is often used within certain types
of models...we will get to examples later

Data Frame Creation Example

>

>

> reservoir.operation$height = c(seq(from=22,t0=10, by=-2), seq(from=12,to=20,
by=2))

> #reservoir.operation$height = ¢(20,18,16,14,12,10,12,14,16,18,20)

>

> reservoir.operation$flowrate = rnorm(n=12, mean=3, sd=0.25)
>
> reservoir.operation
month height flowrate
1 Jan 22 2.967183 Adding columns
2 Feb 20 2.923782
3 Mar 18 2.891444
4 Apr 16 3.048090
5 May 14 2.598533
6 Jun 12 3.027024
7 Jul 10 2.906364
8 Aug 12 3.460389
9 Sep 14 2.965138
10 Oct 16 3.320663
11 Nov 18 3.300340
12 Dec 20 2.916503

Key Programming concepts: Review of data types

We can also use data frames (or matrices) to store results

- w mou ww s . TR — s ——— - -— -

power gen(helght reservoir. operatlonShelght flow=reservoir.operation$flow)
[1] 511779.6 458449.1 408040.5 382352.4 285215.0 284782.4 227858.9 325553.4
[9] 325453.5 416544 .0 465744.0 457307.7
> reservoir.operation$power = power_gen(height=reservoir.operation$height,
flow=reservoir.operation$flow)
> reservoir.operation
month height flowrate power

Ooo~NOYULTH WNBE

Jan 22 2.967183 511779.6
Feb 20 2.923782 458449.1
Mar 18 2.891444 408040.5
Apr 16 3.048090 382352.4
May 14 2.598533 285215.0
Jun 12 3.027024 284782.4
Jul 10 2.906364 227858.9
Aug 12 3.460389 325553.4
Sep 14 2.965138 325453.5
10 Oct 16 3.320663 416544.0
11 Nov 18 3.300340 465744.0
12 Dec 20 2.916503 457307.7

Key Programming concepts: Review of data types

+ Some other useful commands

« with - allows you to use the names of columns in the
data frame directly

“ summary - summaries of columns (max, min,
mean...)

>

> with(reservoir.operation, barplot(power, names=month, ylab="Power (W/s)"))
>

4e+05
|

Power (W/s)

2e+05
|

0e+00
|

Jan Feb Mar Apr May ~Jun Jul Aug Sep Oct Nov Dec

Summary

>
>

> summary(reservoir.operation)

month

Apr

height

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

:10.0

13.5

:16.0
:16.0

18.5

:22.0

flowrate

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

:2.599

2.914

:2.966
:3.027

3.111

:3.460

power

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

: 227859

315394

395196
: 379090

457593

:511780

Key Programming concepts: Review of data types

+ We can also use other functions and built in R functions

(like mean, Im, sum) within our function

* You can imbed any function you write (or already in R)
in your function

Key Programming concepts: functions calling other functions

« Example of embedded function

“ Lets say we want to commute total annual power

generated, given our inputs of average height and flow
for each month?

+ what additional information would we need?

>
>

> power_gen(height=reservoir.operation$height, flow=reservoir.operation$flow)
[1] 511779.6 458449.1 408040.5 382352.4 285215.0 284782.4 227858.9 325553.4
[9] 325453.5 416544.0 465744.0 457307.7
> power_gen
function (Cheight, flow, rho = 1000, g = 9.8, Keff = 0.8)
{
result = rho * height * flow * g * Keff
return(result)

3

#' Total Power Generation

#I

#' This function computes total power generation from a reservoir given 1its
height and flow rate into turbines and number of days (and secs) within
those days that the turbines are in operation

#' @param rho Density of water (kg/m3) Default is 1000

#' @param g Acceleration due to gravity (m/sec2) Default is 9.8

#' @param Keff Turbine Efficiency (0-1) Default is 0.8

#' @param height height of water in reservoir (m)

#' @param flow flow rate (m3/sec)

#' @param number of days

#' @param secs in days Default is 86400

#' @author Naomi

#' @examples power_gen(20, 1, 10)

#' @return Power generation (MW)

power_gen_total = function(height, flow, days, secs=86400, rho=1000, g=9.8,
Keff=0.8) {

result rho x height x flow x g * Keff
result result x days *x secs
total = sum(result)/1le6

return(total)

}

>

> power_gen_total(reservoir.operation$height, reservoir.operation$flowrate,
days=30)

[1] 11702915

>

/
0‘0

/
0‘0

/
0‘0

/
0‘0

vector, (c)
matrices, arrays
data frames
lists

factors

Data Structures

Key Programming concepts: Review of data types

+ Lists are the most “informal” data structures in R

“ List are really usetul for keeping track of and organizing

groups of t

hings that are not all the same

+ A list could be a table where number of rows is different

for each column

together

* A list can have numeric, character, factors all mixed

“ List are otften used for returning more complex
information from function (e.g. Im)

Key Programming concepts: Review of data types

« A simple list: using names to identity elements

> sale = list(hnumber=2, quality="high", what="apple", cost=4)
> sale

$number
[1]2

$quality
[1] "high"

$what
[1] "apple”

$cost
[1]4

>
> costs = ¢(20,40,22, 32, 5)

> quality = c("G","G","F","G","B")

> purchased = ¢(33,5,22,6,7)

>

> sales = data.frame(costs=costs, quality=quality, purchased=purchased)
>
>

> sales

>costs = c(73,44)

costs quality purchased >quality = c("G","G")

120 G 33 >purchased = c(100,22)

2 40 G 5

3 22 F 22 >sales?2 = data.frame(costs=costs, quality=quality
4 32 G 6 purchased=purchased)

5 5 B 7

>

With lists we can combine sales data frames from two
different places into a single data structure

[ists

>

> markets = list(sitel=sales, site2=sales2)
> markets

$sitel

costs quality purchased
1 20 G 33
2 40 G 5
3 22 F 22
4 32 G 6
5 5 B 7
$site?

costs quality purchased
1 73 G 100
2 44 G 22

> markets[[1]]%$costs
[1] 20 40 22 32 5

>

> markets$sitels$costs
[1] 20 40 22 32 5

>

V V.V

VVOUupsWNE

V—V VNPE,

[ists

markets[[1]]
costs quality purchased

20 G 33
40 G 5
22 F 22
32 G 6

5 B 7

markets[[2]]
costs quality purchased

/3 G 100
44 G 22
> markets[[1]][1,3]
1] 33

[[]] is used to get elements from the list

Key Programming concepts: Review of data types

R/

« one of the most useful things to do with list is to use
them to return multiple ‘items’ from a function

#' computes profit from price for forest plot and Mg/C in that plot
#' @param price ($)

#' @param carbon (MgC)

#' @return list with mean, min, and max prices

compute_carbonvalue = function(price, carbon) {

cost.per.carbon = price/carbon

a = mean(cost.per.carbon)
b = max(cost.per.carbon)
c = min(cost.per.carbon)

result = list(avg=a, min=c, max=b)
return(result)

}

Key Programming concepts: Review of data types

R/

“ example: returning lists from a function

>
> obs = data.frame(prices=c(23,44,60,4,2,33,59),
forestC=c(59,88,100,10,8,79,300))

> obs

prices forestC
1 23 59
2 44 88
3 60 100
4 4 10
5 2 8
3 33 79
7 59 300

> forest.res = compute_carbonvalue(obs$prices, obs$forestC)
> forest.res

$avg

[1] ©0.3934598

$min
[1] 0.1966667

$max
[1] 0.6

>

Key Programming concepts: Review of data types

R/

“ example: returning lists from a function

> obs=data.frame(prices=c(18,2,12,5), grassC=c(22,3,19,8))
> grass.res=compute_carbonvalue(obs$prices, obs$grassC)
> grass.res

$avg
[1] 0.6853569

$min
[1] 0.625

$max
[1] 0.8181818

>

Key Programming concepts: Review of data types

* Many functions that you use in R, return lists

* names (to see what is in a list)

* attributes (to see what is in a list)

> names(forest.res)

[1] "avg" "min" "max"
> attributes(forest.res)
$names

[1] "avg" "min" "max"

Key Programming concepts: Review of data types

>
+ lm 1s an > res = Im(obs$prices~obs$forestC)
example ofa 7 hamestrey
1] "coefficients" '"residuals" "effects"
function that 4] "rank" "fitted.values" "assign"
returns a list 7] "qr" "df.residual"” "xlevels"
[10] "call" "terms" "model"

> res$coefficients
(Intercept) obs$forestC
14.9789368 0.1865644
> res$model

obs$prices obs$forestC

1 23 59
2 2 88
3 60 100
= = 10
5 2 8

6 33 79
7 59 300
>

7/
%*

7/
%*

7/
%*

7/
%

7/
%

vectors (c)
matrices, arrays
data frames
lists

factors

Data Structures

2518

Key Programming concepts: Review of data types

* Factors (a bit tricky, basically a vector of “things” that has
different levels (classes); not really numeric - so you can’t average
them!)

+ But can be useful for doing “calculations” with categories

>

>a = c(1,5,2.5,9,5,2.5)

> a

[1] 1.0 5.0 2.5 9.0 5.0 2.5

> mean(a)

[1] 4.166667

> a = as.factor(c(1,5,2.5,9,5,2.5))
> mean(a)

[1] NA

Warning message:

In mean.default(a) : argument is not numeric or logical: returning NA

> a
[1]1 5 2.59 5 2.5
Levels: 1 2.559
> summary(a)

125 5 9

1 2 2 1

Key Programming concepts: Review of data types

* summary can be used with factors to get frequencies in

each category (or “level”)

>
>
>
> species.recorded = c("butterfly","butterfly"”, "mosquito”,"butterfly","
ladybug", "ladybug", "mosquito™)
> species.recorded = as.factor(species.recorded)
> species.recorded
[1] butterfly butterfly mosquito butterfly ladybug 1ladybug mosquit
o
Levels: butterfly ladybug mosquito
> summary(species.recorded)
butterfly ladybug mosquito
3 2 2
> plot(species.recorded)

3.0
|

>

2.0

1.0

0.0
|

butterfly

ladybug

mosquito

>

>

>

> species.recorded = c("butterfly","butterfly"”, "mosquito”,"butterfly”,"
ladybug", "ladybug", "mosquito™)

> species.recorded = as.factor(species.recorded)

> species.recorded

[1] butterfly butterfly mosquito butterfly ladybug ladybug mosquit
o}

Levels: butterfly ladybug mosquito

> summary(species.recorded)

> mean(summary(species.recorded)) butterfly 1ladybug mosquito

[1] 2.333333 3 2 2

> max(summary(species.recorded)) > plot(species.recorded)

[1] 3 g

> sum(summary(species.recorded))

[1] 7

> sum(species.recorded) You can “do thingS” (apply

Error 1in Sumary.FaCtor(CCIL, 1L, 3L, 1L, ZL, ZL, 3L), na.rm = FALSE) . functions) to the Summary
sum not meaningful for factors

> species.recorded (frequency of each “factor”
[1] butterfly butterfly mosquito butterfly ladybug ladybug level
[7] mosquito

Levels: butterfly ladybug mosquito
> summary(species.recorded)[1]
butterfly
3

> summary(species.recorded)[2]
ladybug

2
> summary(species.recorded)[3]
mosquito

2
>

Key Programming concepts: Review of data types

* A simple model that takes advantage of factors

* A model to compute an index of species diversity from
a list of recorded species

D= s (n/N)

where n is the number of individuals in each species, and N is total number

Key Programming concepts: Review of data types

#' Simpson's Species Diversity Index

3

#' Compute a species diversity index

#' @param species list of species (names, or code)

#' @Qreturn value of Species Diversity Index

#' @examples

#' compute simpson index(c(“butterfly”, "butterfly", "mosquito”, "butterfly"”,
#’ 7ladybug", "ladybug")))

#' @Qreferences

#' http://www.tiem.utk.edu/~gross/bioed/bealsmodules/simpsonDI.html

compute simpson index = function(species) {

species = as.factor(species)

tmp = (summary(species)/sum(summary(species))) ** 2
diversity = sum(tmp)

return(diversity)

}

Data Structures

R/

» a bit more on factors; a list of numbers can also be a

factor but then they are not treated as actual numbers -
you could think of them as “codes” or addresses or..

“ use as.numeric or as.character to go back to a regular

vector from a factor

>

> items = ¢(1,5,1,5,6,3)

> mean(items)

[1] 3.5

> items = as.factor(c(1,5,1,5,6,3))
> mean(items)

[1] NA

Warning message:

In mean.default(items) : argument is not numeric or logical: returning
NA

> summary(items)

1356

2121

> tmp = as.numeric(items)

> tmp

[1]131342

> mean(tmp)

[1] 2.333333

>

Key Programming concepts: Review of data types

example: returning lists from a function

#' Describe diversity based on a list of species

#l

#' Compute a species diversity index

#' @param species list of species (names, or code)

#' @return list with the following items

#' \describe{

#' \item{num}{ Number of distinct species}

#' \item{simpson}{Value of simpson diversity index}

#' \item{dominant}{Name of the most frequently occuring species}

#' 0}

#' @examples

#l
compute_diversity(c("butterfly","butterfly","mosquito","butterfly","ladybug",
"ladybug")))

#' @references

#' http://www.tiem.utk.edu/~gross/bioed/bealsmodules/simpsonDI.html

compute_diversity = function(species) {

species = as.factor(species)

tmp = (summary(species)/sum(summary(species))) *x 2

diversity = sum(tmp)

nspecies = length(summary(species))

tmp = which.max(summary(species))

dominant = names(summary(species) [tmp])
return(list(num=nspecies, simpson=diversity, dominant=dominant))

}

Assignment

In your group, write a function that

performs some data analysis that is likely
to be usetul for your project...

Enter this function in your organization’s
github space

Read / create some data to test your
function

Also include the data in github

Submit the link the repository

