Programing fundamentals

+ A program is a set of instructions for a computer to follow

* Programs are often used to manipulate data (in all type and
formats you discussed last week)

« Simple to complex

* the scripts you wrote last week (simple)

* instructions to analyze relationships in census data and
visualize them

* amodel of global climate



Programing fundamentals

« Operations (=,+,-,...concatenate, copy)
« Data structures (simple variables, arrays, lists...)

« Control structures (if then, loops)

+ Modules...

Concepts common to all languages through the syntax
may be different



Modularity

Main controls the overall flow of
program- calls to the functions/
modules/building blocks

«1

Functions - the
modules/boxes

* A program is often multiple pieces put together

* These pieces or modules can be used multiple times



Programing fundamentals

Box 1. Summary of Best Practices

1. Write programs for people, not computers.

(a) A program should not require its readers to hold more
than a handful of facts in memory at once.

(b) Make names consistent, distinctive, and meaningful.
(c) Make code style and formatting consistent.

2. Let the computer do the work.

(a) Make the computer repeat tasks.
(b) Save recent commands in a file for re-use.

(c) Use a build tool to automate workflows.

3. Make incremental changes.

(a) Work in small steps with frequent feedback and course
correction.

(b) Use a version control system.

(c) Put everything that has been created manually in version
control.

4. Don’t repeat yourself (or others).

(a) Every piece of data must have a single authoritative
representation in the system.

(b) Modularize code rather than copying and pasting.
(c) Re-use code instead of rewriting it.

5. Plan for mistakes.

(a) Add assertions to programs to check their operation
(b) Use an off-the-shelf unit testing library.

(c) Turn bugs into test cases.

(d) Use a symbolic debugger.

6. Optimize software only after it works correctly.

(a) Use a profiler to identify bottlenecks.
(b) Write code in the highest-level language possible.

7. Document design and purpose, not mechanics.

(a) Document interfaces and reasons, not implementati

(b) Refactor code in preference to explaining how it we

(c) Embed the documentation for a piece of software i
software.

8. Collaborate.

(a) Use pre-merge code reviews.

(b)  Use pair programming when bringing someone new
speed and when tackling particularly tricky problem

() Use an issue tracking tool.



Best practices for software development

+ Read: Wilson G, Aruliah DA, Brown CT, Chue Hong NP,
Davis M, et al. (2014) Best Practices for Scientific Computing.
PLoS Biol 12(1): €1001745. d0i:10.1371 /journal.pbio.1001745

» Blanton, B and Lenhardt, C 2014. A Scientist’s Perspective

on Sustainable Scientific Software. Journal of Open Research
Software 2(1):e17, DOI: http:/ /dx.doi.org/10.5334 /jors.ba

+ but also

« http:/ /simpleprogrammer.com /2013/02 /17 / principles-are-
timeless-best-practices-are-fads /



http://simpleprogrammer.com/2013/02/17/principles-are-timeless-best-practices-are-fads/

Best practices for model (software) development

# Common problems

* Unreadable code (hard to understand, easy to forget
how it works, hard to find errors, hard to expand)

* Overly complex, disorganized code (hard to find errors;
hard to modify-expand)

* Insufficient testing (both during development and after)

* Not tracking code changes (multiple versions, which is
correct?)



STEPS: Program Design

. Clearly define your goal as precisely as possible,
what do you want your program to do

1. inputs/parameters
2. outputs

. Implement and document

. Jest

. Refine



Steps for building a

module

Module

Design the program “conceptually” - “on paper” in words or figures
Translate into a step by step representation

Choose programming language

Define inputs (data type, units)

Define output (data type, units)

Define structure

Write program

Document the program

. Test the program

10. Refine...

O 0 N O RO



Best practices for software development

+ Automated tools (useful for more complex code development

+ ( note that GP’s often create programs > 100 lines of code)

+ Automated documentation

« http:/ /www.stack.nl/ ~dimitri/doxygen/

+ http:/ /roxygen.org/roxygen2-manual.pdf

+ Automated test case development

« http:/ /r-pkgs.had.co.nz/tests.html

+ Automated code evolution tracking (Version Control)

« https:/ / github.com/



http://www.stack.nl/~dimitri/doxygen/
http://roxygen.org/roxygen2-manual.pdf
http://r-pkgs.had.co.nz/tests.html
https://github.com/

Designing Programs
+ What’s in the box (the program itself) that gives you a
relationship between outputs and inputs

« the link between inputs and output

« breaks this down into bite-sized steps or calls to other
boxes)

+ think of programs as made up building blocks

+ the design of this set of sets should be easy to follow



, space, conditions

ime

t

Complex data

ions

teract

ir in

and the

I 1

‘vmam |

We often have a project that has a set of
different functions and data sets - we can
combine these together as a package

Building Packages



Functions in R

+ Format for a basic function in R

#” documentation that describes inputs, outputs and what the function does
FUNCTION NAME = function(inputs, parameters) {
body of the function (manipulation of inputs)

return(values to return)

}

In R, inputs and parameters are treated the same; but it is useful to think about them separately in
designing the model - collectively they are sometimes referred to as arguments

ALWAYS USE Meaningful names for your function, its parameters and variables calculated within the
function



Use Lists to return more complex info

#' Summary information about spring climate

4

#' computes summary information about spring temperature and precipitation

#' @param clim.data data frame with columns tmax, tmin (C)

#' rain (precip in mm), year, month (integer), day

#' @param months (as integer) to include in spring; default 4,5,6

#' @return returns a list containing, mean spring temperature (mean.springT, (C))
#' year with lowest spring temperature (coldest.spring (year))

#' mean spring precipitation (mean.springP (mm))

#' spring (as year) with highest precip (wettest.spring (year))

spring.summary = function(clim.data, spring.months = c(4:6)) {

spring = subset(clim.data, clim.data$month %in% spring.months)

springT = (spring$tmax+spring$tmin)/2.0

all.springT = aggregate(springT, by =list(spring$year), mean)
mean.springT = mean(c(spring$tmax, spring$tmin))

lowyear = spring$year[which.min(spring$tmin)]

spring.precip = as.data.frame(matrix(nrow=unique(spring$year), ncol=2))
colnames(spring.precip)=c("precip", "year")

spring.precip = aggregate(spring$rain, by=list(spring$year), sum)

colnames(spring.precip) = c("year","precip")
mean.spring.precip = mean(spring.precip$precip)
wettest.spring = spring.precip$year[which.max(spring.precip$precip)]

return(list(mean.springT = mean.springT, coldest.spring=lowyear,
mean.springP=mean.spring.precip,wettest.spring=wettest.spring,
all.springP = spring.precip, all.springT = all.springT ))



Packages

* Packages in R are ways to organize code/data

« We’ve used many packages (e.g dplyr) that contain
different functions (e.g manipulate())

* You can create your own package to organize code that
you might use for a particular project

* sharing

+ standardization



Packages

+ Packages have a precise directory structure to store your code, data,
documentation and tests that is easy for R to read

+ A file named DESCRIPTION with descriptions of the package, author, and
license conditions - meta data

* in a structured text format that is readable by computers and by people.
- Aman/ subdirectory of documentation files.
» o An R/ subdirectory of R code.

» o A data/ subdirectory of datasets.

* There can be other components but this is a start



Packages

+ This package (“classexamples”) is now a directory structure to store your
code, data, documentation and tests that is easy for R to read

# A file named DESCRIPTION with descriptions of the package, author, and
license conditions

# in a structured text format that is readable by computers and by people.
+ o Aman/ subdirectory of documentation files.
+ o An R/ subdirectory of R code.

« o A data/ subdirectory of datasets.

* There can be other components but this is a start



Packages

* To create a package - in R studio -
* start a new project
“ create R package
“ at creation you can add things (.R code, .RData data)

* notice how it creates a project, and subdirectories -
any .R files you created will go in R directory



Packages

« use load_all() to load everything in your package into
your current workspace

+ DESCRIPTION

« edit this file to describe your function



Packages

<+ Data

* to add data to your package; store as an .RData file in the Data
subdirectory

* use save(name, file="data/name.RData”)

* you may have to create data

7/

* to add code to your package; store as a .R file in the R
subdirectory

“ See example in esm237examples



7/
%*

7/
%*

7/
%*

7/
%

7/
%

vectors (c)
matrices, arrays
data frames
lists

factors

Data Structures

2518



Key Programming concepts: Review of data types

* Factors (a bit tricky, basically a vector of “things” that has
different levels (classes); not really numeric - so you can’t average
them!)

+ But can be useful for doing “calculations” with categories

>

>a = c(1,5,2.5,9,5,2.5)

> a

[1] 1.0 5.0 2.5 9.0 5.0 2.5

> mean(a)

[1] 4.166667

> a = as.factor(c(1,5,2.5,9,5,2.5))
> mean(a)

[1] NA

Warning message:

In mean.default(a) : argument is not numeric or logical: returning NA

> a
[1]1 5 2.59 5 2.5
Levels: 1 2.559
> summary(a)

125 5 9

1 2 2 1



Key Programming concepts: Review of data types

* summary can be used with factors to get frequencies in

each category (or “level” )

>
>
>
> species.recorded = c("butterfly","butterfly"”, "mosquito”,"butterfly","
ladybug", "ladybug", "mosquito™)
> species.recorded = as.factor(species.recorded)
> species.recorded
[1] butterfly butterfly mosquito butterfly ladybug 1ladybug mosquit
o
Levels: butterfly ladybug mosquito
> summary(species.recorded)
butterfly ladybug mosquito
3 2 2
> plot(species.recorded)

3.0
|

>

2.0

1.0

0.0
|

butterfly

ladybug

mosquito




>

>

>

> species.recorded = c("butterfly","butterfly"”, "mosquito”,"butterfly”,"
ladybug", "ladybug", "mosquito™)

> species.recorded = as.factor(species.recorded)

> species.recorded

[1] butterfly butterfly mosquito butterfly ladybug ladybug mosquit
o}

Levels: butterfly ladybug mosquito

> summary(species.recorded)

> mean(summary(species.recorded)) butterfly 1ladybug mosquito

[1] 2.333333 3 2 2

> max(summary(species.recorded)) > plot(species.recorded)

[1] 3 g

> sum(summary(species.recorded))

[1] 7

> sum(species.recorded) You can “do thingS” (apply

Error 1in Sumary.FaCtor(CCIL, 1L, 3L, 1L, ZL, ZL, 3L), na.rm = FALSE) . functions) to the Summary
sum not meaningful for factors

> species.recorded (frequency of each “factor”
[1] butterfly butterfly mosquito butterfly ladybug ladybug level
[7] mosquito

Levels: butterfly ladybug mosquito
> summary(species.recorded)[1]
butterfly
3

> summary(species.recorded)[2]
ladybug

2
> summary(species.recorded)[3]
mosquito

2
>



Key Programming concepts: Review of data types

* A simple model that takes advantage of factors

* A model to compute an index of species diversity from
a list of recorded species

D= s (n/N)

where n is the number of individuals in each species, and N is total number



Key Programming concepts: Review of data types

#' Simpson's Species Diversity Index

3

#' Compute a species diversity index

#' @param species list of species (names, or code)

#' @Qreturn value of Species Diversity Index

#' @examples

#' compute simpson index(c(“butterfly”, "butterfly", "mosquito”, "butterfly"”,
#’ 7ladybug", "ladybug")))

#' @Qreferences

#' http://www.tiem.utk.edu/~gross/bioed/bealsmodules/simpsonDI.html

compute simpson index = function(species) {

species = as.factor(species)

tmp = (summary(species)/sum(summary(species))) ** 2
diversity = sum(tmp)

return(diversity)

}



Key Programming concepts: Review of data types

>
+ lm 1s an > res = Im(obs$prices~obs$forestC)
example ofa 7 hamestrey
1] "coefficients" '"residuals" "effects"
function that 4] "rank" "fitted.values" "assign"
returns a list 7] "qr" "df.residual"” "xlevels"
[10] "call" "terms" "model"

> res$coefficients
(Intercept) obs$forestC
14.9789368 0.1865644
> res$model

obs$prices obs$forestC

1 23 59
2 2 88
3 60 100
= = 10
5 2 8

6 33 79
7 59 300
>



Data Structures

R/

» a bit more on factors; a list of numbers can also be a

factor but then they are not treated as actual numbers -
you could think of them as “codes” or addresses or..

“ use as.numeric or as.character to go back to a regular

vector from a factor

>

> items = ¢(1,5,1,5,6,3)

> mean(items)

[1] 3.5

> items = as.factor(c(1,5,1,5,6,3))
> mean(items)

[1] NA

Warning message:

In mean.default(items) : argument is not numeric or logical: returning
NA

> summary(items)

1356

2121

> tmp = as.numeric(items)

> tmp

[1]131342

> mean(tmp)

[1] 2.333333

>



Data Structures

Generating “fake” or example data - sample

UL A B

tmp = c("ponderosa","jack”,"white","lodgepole","douglasfir","oak")
obs.trees= list(species=sample(tmp, replace=T, size=100))

obs.trees$carbon = runif(min=5, max=20, n=100)

# run our functions
compute_simpson_index(obs.trees$species)

# save data for use in your R package
save(obs.trees, file="data/obstrees.RData")



/
0‘0

/
0‘0

/
0‘0

/
0‘0

vector, (c)
matrices, arrays
data frames
lists

factors

Data Structures



Key Programming concepts: Review of data typessd

Combine data of
L ()
list( )
chind()
Data
e e .

Tidy up data and store in ‘
new object

, Define size a
B L vector( ) priori
&
data.frame () matrix( ) Il}verse, transpose,
etc.

Fig. 2.1 Overview of various methods of storing data. The data stored by cbind, matrix, or
data.frame assume that data in each row correspond to the same observation (sample,
case)

http:/ / www.simonqueenborough.com /R /basic/figure/ data-types.png



Key Programming concepts: Looping

Loops are fundamental in all programming languages:
and are frequently used in models

Begin

o<
Y
LOOPS REPEAT True
Loap Condition »| Loop Body
ACTIONS...

SO YOU DON'T HAVE TCO
False

Y

D




Key Programming concepts: Looping

* Two distinctive reasons for looping

* Apply the same equations (e.g for
power generation) over a range of

parameter values &L 99‘9‘" D

« Evolve a variable through time (or 6

space), when the variable’s value o |
at the next time step depends on T g

the previous one (e.g growing a
population)




Key Programming concepts: Looping

* All loops have this basic
structure - repeat statements
(loop body) until a condition is

true C_ Begin D

o<

Loop Condition >- =-> Loop Body




Key Programming concepts: Looping

* In R, the most commonly used loop is the For loop

“ for (iin 1

:n){ statements)

« In “for” loops the i (or whatever variable you want to
use as the counter, is automatically incremented each

time the .

oop is gone through; and the looping ends

when i (t

he counter) reaches n

« What is x? alpha? after this loop is run

>x=(
> for (alpha in 1:4) { x = x+alpha}



>
>

> alpha
[1] 4

> X




Key Programming concepts: Looping

* Another useful looping construct is the

While loop
« keep looping until a condition is met

« Useful when you don’t know what “n”

in the for 1 in to “n” is

» often used in models where you are
evolving

# accumulate something until a
threshold is reached (population,
energy, biomass?

Initialization

........

------------------------------------------------------------------------------




Key Programming concepts: Looping

“ A simple while loop example

>
>

> alpha =0

>x=0

> while (alpha < 100) { alpha = alpha + x; x = x+1}
> X

[1] 15

> alpha

[1] 105

>

+ alpha = (1+2+3+4+5+6+7+8+9+10+11+12+13+14) = 105



Key Programming concepts: Looping

“ A more useful while loop example

“ A question: if a metal toxin in a lake increases by 1% per
year, how many years will it take for the metal level to
be greater than 30 units, if toxin is current at 5 units

* there are other ways to do this, but a while loop would
do it -

> pollutant.level =5

> while (pollutant.level < 30 ) {

+ pollutant.level = pollutant.level + 0.01" pollutant.level

+yr=yr+1

+ 1

>

why won't this work?



Key Programming concepts: Looping

> yr=1

> pollutant.level =5

> while (pollutant.level < 30 ) {

+ pollutant.level = pollutant.level + 0.01" pollutant.level
+yr=yr+1

+1

> > yr

[1] 182

> pollutant.level

[1] 30.2788



Key Programming concepts: Looping

* Most programming languages have For and while loops

* File Loops

# averageb.py

Computes the average of numbers listed in a file.

def main () :
fileName = raw input ("What file are the numbers in? ")
infile = open(fileName, 'r')
sum = 0.0
count = 0
for line in infile.readlines():
sum = sum + eval (line)
count = count + 1

print "\nThe average of the numbers is", sum / count

mcsp.wartburg.edu/ zelle/ python /ppicsl/ .../ Chapter08.p

Python Programming, 1/e 36



Key Programming concepts: Control Structures

* if(cond) expression

N Conditions:
> a=4 — equal
> b=10 > greater than

> if(a >b) win ="a"
= if(b > a) win = "b" >= greater than or equal to

> win < less than
[1]"p" <= less than or equal to
. %in% 1is in a list of something

« ifelse(cond, true, false)

&& AND
§ 'l OR
> win = ifelse(a > b, "a","b") is.null()

> win
[1] b’
>
>



Key Programming concepts: Control Structures

If can also be used to choose what you return from a function

compute_seasonal_flow = function(str,kind) {
str$season = ifelse( str$month %in% c(1,2,3,10,11,12),"winter","summer")

tmp = subset(str, str$season=="winter")
if (kind=="mean") winter= mean(tmp$mm)
if (kind=="max") winter= max(tmp$mm)
if(kind=="min") winter=min(tmp$mm)

tmp = subset(str, str$season=="summer")
if (kind=="mean") summer= mean(tmp$mm)
if(kind=="max") summer= max{(tmp$mm)
if(kind=="min") summer=min(tmp$mm)

return(list(summer=summer, winter=winter))

}



Key Programming concepts: Control Structures

If can also be used to choose what you return from a function

>
>

> compute_seasonal_flow(streamflow,"mean")
$summer

[1] 1.538304

$winter
[1] 0.6200728

> compute_seasonal_flow(streamflow,"max")
$summer

[1] 23.66069

$winter
[1] 71.97168




Key Programming concepts: Review of data types

#' compute NPV

#' compute net present value

#' @param value/cost ($)

#' @param time in the future that cost/value occurs (years)
#' @param discount rate, default 0.01

#' @return value in $

compute NPV function(value, time, discount=0.01) {

result=0.0
if (length(value) < length(time) )
value = rep(value, times=length(time))
for (i in l:length(time) ) {
result = result + value[i] / (1 + discount)**time[i]

}

return(result)



Key Programming concepts: Review of data types

#' compute carbon

B

#' computes growth given species, and spring temperature and precipitation

#' @param currentbiomass (mgC)

#' @param species (name of species)

#' @param species.parm (data frame with species, maxrate (%C/yr), topt (C), pmax
(mm) , pmin (mm)

#' @param springt (C) springtime temperature

#' @param springp (mm) springtime rainfall

#' @Qreturn growth (mgC/year)

compute carbon = function(currentbiomass, species, species.parm, springt, springp)

idx = match(obs.treesS$Sspecies, coeff.species.growth$species)
growth.rate = species.parmSmaxrate[idx]
growth.rate = growth.rate - abs(springt-species.parm$topt[idx])/20
peffect = (springp -species.parm$pmin[idx])/
(species.parm$Spmin[idx]-species.parmSpmax[idx]) *species.parmSmaxrate[idx]
growth.rate = ifelse(springp < species.parm$pmin[idx], O,
ifelse(springp > species.parm$pmax[idx], growth.rate,
growth.rate-peffect) )
new.carbon = currentbiomass*growth.rate
return(new.carbon)



# load "stuff" in your package including R
load_all()

result = spring.summary(clim)
View(result)

# save data for use in your R package
save(clim, file="data/clim.RData")

# generate data
tmp = c("ponderosa’,"jack”,"white","lodgepole”,"douglasfir’,"oak")
obs.trees= list(species=sample(tmp, replace=T, size=100))

obs.trees$carbon = runif(min=5, max=20, n=100)

,'jJack”,"white","lodgepole’,

coeff.species.growth = data.frame(species=c('ponderosa ,"oak"),
maxrate=c(1.2,1.1,1.3,1.6,1.9,1.2),

topt = ¢(9,7,6,5,7,12), pmax = ¢(300,300,300,400,600,400), pmin = ¢(100,200,200,250,250,100))

douglastir

# run our functions

compute_simpson_index(obs.trees$species)

compute_NPV(value=100, time=20, discount=0.01)
compute_carbon(obs.trees$carbon, obs.trees$species, coeff.species.growth, 9, 200)

# save data for use in your R package
save(obs.trees, file="data/obstrees.RData")
save(coeff.species.growth, file=“data/coeff.species.growth.RData")



Key Programming concepts: Looping

* Loops can be “nested” - one loop inside the other

* For example, if we want to calculate NPV for a range of different interest
rates and a range of damages that may be incurred 10 years in the future

+ using a function called compute_npv

= Steps

+ define inputs (interest rates, damages)
+ define a data structure to store results
* define function/model (already available)

“ use looping to run model for all inputs and store in data structure



Key Programming concepts: Looping

* Now we can start to build a more complex program

* Lets say we want to figure out the benefits of a forest,
that include both carbon storage and biodiversity

“ Conceptual model

* Implementation using our building blocks



#' Forest Ecosystem Benefit Computer

#

#' compute_ecobenefit()

#

#' Computes an estimate of forest ecosystem benefits that include both biodiversity and carbon
#' @param tree dataframe with species and current biomass

#' @param carbonprice ($) price paid for carbon

#' @param biodiversityprice ($) price paid for biodiversity in a given year

#' @param paramters for growth model

#' @param clim dataframe with tmax, tmin and precip for each day

#' @param discount discount rates

#' @return annual.benefit and NPV of all benefits over all years

#' @examples

compute_ecobenefit = function(tree, carbonprice, biodiversityprice, coeff.species.growth, clim, discount) {

spring = spring.summary(clim)

benefit = matrix(nrow=nrow(spring$all.springT), ncol=length(tree$species))

for (i in 1:nrow(spring$all.springT)) {
benefit[i,|]=compute_carbon(tree$carbon,trees$species, coeff.species.growth,
spring$all.springT$x[i], spring$all.springP$precipli])
)

benefit = as.data.frame(benefit)*carbonprice

benefitfbiodiversity = compute_simpson_index(tree$species)*biodiversityprice

annual.benefit = apply(benefit,1,sum)
present.benefit = compute_NPV(value=annual.benefit, time=seq(from=1,to=length(annual.benefit)),
discount)
return(list(annual.benefit=annual.benefit, NPV=present.benefit))

]



Key Programming concepts: Looping

Run our more complex function - different discount rates

compute_ecobenefit(obs.trees, 20, 10, coeff.species.growth, clim, 0.01)
compute_ecobenefit(obs.trees, 20, 10, coeff.species.growth, clim, 0.05)



