
❖ A program is a set of instructions for a computer to follow !

❖ Programs are often used to manipulate data (in all type and
formats you discussed last week)!

❖ Simple to complex!

❖ the scripts you wrote last week (simple)!

❖ instructions to analyze relationships in census data and
visualize them!

❖ a model of global climate

Programing fundamentals

❖ Operations (=,+,-,…concatenate, copy)!

❖ Data structures (simple variables, arrays, lists…)!

❖ Control structures (if then, loops)!

❖ Modules…!

!

Concepts common to all languages through the syntax
may be different

Programing fundamentals

Modularity

Main controls the overall flow of
program- calls to the functions/

modules/building blocks

Functions - the
modules/boxes

Functions - the
modules/boxes

Functions - the
modules/boxes Functions - the

modules/boxes Functions - the
modules/boxes

❖ A program is often multiple pieces put together!

❖ These pieces or modules can be used multiple times

Programing fundamentals

❖ Read: Wilson G, Aruliah DA, Brown CT, Chue Hong NP,
Davis M, et al. (2014) Best Practices for Scientific Computing.
PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745!

❖ Blanton, B and Lenhardt, C 2014. A Scientist’s Perspective
on Sustainable Scientific Software. Journal of Open Research
Software 2(1):e17, DOI: http://dx.doi.org/10.5334/jors.ba!

❖ but also!

❖ http://simpleprogrammer.com/2013/02/17/principles-are-
timeless-best-practices-are-fads/

Best practices for software development

http://simpleprogrammer.com/2013/02/17/principles-are-timeless-best-practices-are-fads/

Best practices for model (software) development

❖ Common problems!

❖ Unreadable code (hard to understand, easy to forget
how it works, hard to find errors, hard to expand)!

❖ Overly complex, disorganized code (hard to find errors;
hard to modify-expand)!

❖ Insufficient testing (both during development and after)!

❖ Not tracking code changes (multiple versions, which is
correct?)

STEPS: Program Design

1. Clearly define your goal as precisely as possible,
what do you want your program to do!

1. inputs/parameters!

2. outputs!

2. Implement and document!

3. Test !

4. Refine

Steps for building a
module

!
1. Design the program “conceptually” - “on paper” in words or figures!
2. Translate into a step by step representation!
3. Choose programming language!
4. Define inputs (data type, units)!
5. Define output (data type, units)!
6. Define structure!
7. Write program!
8. Document the program !
9. Test the program!
10. Refine…

ModuleInput Output

Parameters

Best practices for software development

❖ Automated tools (useful for more complex code development !

❖ (note that GP’s often create programs > 100 lines of code)!

❖ Automated documentation!

❖ http://www.stack.nl/~dimitri/doxygen/!

❖ http://roxygen.org/roxygen2-manual.pdf !

❖ Automated test case development!

❖ http://r-pkgs.had.co.nz/tests.html!

❖ Automated code evolution tracking (Version Control)!

❖ https://github.com/

http://www.stack.nl/~dimitri/doxygen/
http://roxygen.org/roxygen2-manual.pdf
http://r-pkgs.had.co.nz/tests.html
https://github.com/

Designing Programs

❖ What’s in the box (the program itself) that gives you a
relationship between outputs and inputs!

❖ the link between inputs and output !

❖ breaks this down into bite-sized steps or calls to other
boxes) !

❖ think of programs as made up building blocks!

❖ the design of this set of sets should be easy to follow!

Building Packages
We often have a project that has a set of
different functions and data sets - we can
combine these together as a package

Package

Complex data: time, space, conditions!
and their interactions

Functions in R
❖ Format for a basic function in R!

!
#’ documentation that describes inputs, outputs and what the function does!

FUNCTION NAME = function(inputs, parameters) {!

body of the function (manipulation of inputs)!

return(values to return)!

}!

!
In R, inputs and parameters are treated the same; but it is useful to think about them separately in
designing the model - collectively they are sometimes referred to as arguments!

!
ALWAYS USE Meaningful names for your function, its parameters and variables calculated within the
function

Use Lists to return more complex info
#' Summary information about spring climate	
#'	
#' computes summary information about spring temperature and precipitation	
#' @param clim.data data frame with columns tmax, tmin (C)	
#'	rain (precip in mm), year, month (integer), day	
#' @param months (as integer) to include in spring; default 4,5,6	
#' @return returns a list containing, mean spring temperature (mean.springT, (C))	
#' year with lowest spring temperature (coldest.spring (year))	
#' mean spring precipitation (mean.springP (mm))	
#' spring (as year) with highest precip (wettest.spring (year))	!!
spring.summary = function(clim.data, spring.months = c(4:6)) {	
 	
 spring = subset(clim.data, clim.data$month %in% spring.months)	
 springT = (spring$tmax+spring$tmin)/2.0	
 all.springT = aggregate(springT, by =list(spring$year), mean)	
 mean.springT = mean(c(spring$tmax, spring$tmin))	
 lowyear = spring$year[which.min(spring$tmin)]	
 spring.precip = as.data.frame(matrix(nrow=unique(spring$year), ncol=2))	
 colnames(spring.precip)=c("precip","year")	
 	
 spring.precip = aggregate(spring$rain, by=list(spring$year), sum)	
 	
 	
 colnames(spring.precip) = c("year","precip") 	
 mean.spring.precip = mean(spring.precip$precip)	
 wettest.spring = spring.precip$year[which.max(spring.precip$precip)]	
 	
 return(list(mean.springT = mean.springT, coldest.spring=lowyear, 	
 mean.springP=mean.spring.precip,wettest.spring=wettest.spring, 	
		 	 all.springP = spring.precip, all.springT = all.springT))	
}	

Packages
❖ Packages in R are ways to organize code/data!

❖ We’ve used many packages (e.g dplyr) that contain
different functions (e.g manipulate())!

❖ You can create your own package to organize code that
you might use for a particular project!

❖ sharing!

❖ standardization

Packages
❖ Packages have a precise directory structure to store your code, data,

documentation and tests that is easy for R to read!

❖ A file named DESCRIPTION with descriptions of the package, author, and
license conditions - meta data!

❖ in a structured text format that is readable by computers and by people.!

❖ • A man/ subdirectory of documentation files.!

❖ • An R/ subdirectory of R code.!

❖ • A data/ subdirectory of datasets.!

!

❖ There can be other components but this is a start

Packages
❖ This package (“classexamples”) is now a directory structure to store your

code, data, documentation and tests that is easy for R to read!

❖ A file named DESCRIPTION with descriptions of the package, author, and
license conditions!

❖ in a structured text format that is readable by computers and by people.!

❖ • A man/ subdirectory of documentation files.!

❖ • An R/ subdirectory of R code.!

❖ • A data/ subdirectory of datasets.!

!

❖ There can be other components but this is a start

Packages
❖ To create a package - in R studio - !

❖ start a new project!

❖ create R package !

❖ at creation you can add things (.R code, .RData data)!

❖ notice how it creates a project, and subdirectories -
any .R files you created will go in R directory

Packages
❖ use load_all() to load everything in your package into

your current workspace!

❖ DESCRIPTION!

❖ edit this file to describe your function

Packages
❖ Data!

❖ to add data to your package; store as an .RData file in the Data
subdirectory!

❖ use save(name, file=“data/name.RData”)!

❖ you may have to create data!

❖ R!

❖ to add code to your package; store as a .R file in the R
subdirectory!

❖ See example in esm237examples

Data Structures

❖ vectors (c)!

❖ matrices, arrays!

❖ data frames!

❖ lists!

❖ factors

2518

Key Programming concepts: Review of data types
❖ Factors (a bit tricky, basically a vector of “things” that has

different levels (classes); not really numeric - so you can’t average
them!)!

❖ But can be useful for doing “calculations” with categories

Key Programming concepts: Review of data types

❖ summary can be used with factors to get frequencies in
each category (or “level”)

You can “do things” (apply
functions) to the summary
(frequency of each “factor”

level

Key Programming concepts: Review of data types

❖ A simple model that takes advantage of factors!

❖ A model to compute an index of species diversity from
a list of recorded species

where n is the number of individuals in each species, and N is total number

Key Programming concepts: Review of data types

#' Simpson's Species Diversity Index!
#'!
#' Compute a species diversity index!
#' @param species list of species (names, or code)!
#' @return value of Species Diversity Index!
#' @examples!
#' compute_simpson_index(c(“butterfly","butterfly","mosquito","butterfly",!
#’ ”ladybug","ladybug")))!
#' @references!
#' http://www.tiem.utk.edu/~gross/bioed/bealsmodules/simpsonDI.html!
!
compute_simpson_index = function(species) {!
!
species = as.factor(species)!
tmp = (summary(species)/sum(summary(species))) ** 2!
diversity = sum(tmp)!
return(diversity)!
}!
!

❖ lm is an
example of a
function that
returns a list

Key Programming concepts: Review of data types
> !
> res = lm(obs$prices~obs$forestC)!
> names(res)!
 [1] "coefficients" "residuals" "effects" !
 [4] "rank" "fitted.values" "assign" !
 [7] "qr" "df.residual" "xlevels" !
[10] "call" "terms" "model" !
> res$coefficients!
(Intercept) obs$forestC !
 14.9789368 0.1865644 !
> res$model!
 obs$prices obs$forestC!
1 23 59!
2 44 88!
3 60 100!
4 4 10!
5 2 8!
6 33 79!
7 59 300!
>

Data Structures

❖ a bit more on factors; a list of numbers can also be a
factor but then they are not treated as actual numbers -
you could think of them as “codes” or addresses or..!

❖ use as.numeric or as.character to go back to a regular
vector from a factor

Data Structures

Generating “fake” or example data - sample!

tmp = c("ponderosa","jack","white","lodgepole","douglasfir","oak")!
obs.trees= list(species=sample(tmp, replace=T, size=100))!
!
obs.trees$carbon = runif(min=5, max=20, n=100)!
!
run our functions!
compute_simpson_index(obs.trees$species)!
!
save data for use in your R package!
save(obs.trees, file="data/obstrees.RData")

Data Structures

❖ vector, (c)!

❖ matrices, arrays!

❖ data frames!

❖ lists!

❖ factors

Key Programming concepts: Review of data typessd

http://www.simonqueenborough.com/R/basic/figure/data-types.png

Key Programming concepts: Looping

❖ Loops are fundamental in all programming languages:
and are frequently used in models

Key Programming concepts: Looping

❖ Two distinctive reasons for looping!

❖ Apply the same equations (e.g for
power generation) over a range of
parameter values!

❖ Evolve a variable through time (or
space), when the variable’s value
at the next time step depends on
the previous one (e.g growing a
population)

Key Programming concepts: Looping

❖ All loops have this basic
structure - repeat statements
(loop body) until a condition is
true

Key Programming concepts: Looping

❖ In R, the most commonly used loop is the For loop!

❖ for (i in 1:n) { statements}!

❖ In “for” loops the i (or whatever variable you want to
use as the counter, is automatically incremented each
time the loop is gone through; and the looping ends
when i (the counter) reaches n!

❖ What is x? alpha? after this loop is run
>x=0!
> for (alpha in 1:4) { x = x+alpha}!

> !
> !
> x=0!
> for (alpha in 1:4) { x = x+alpha}!
> !
> !
> alpha!
[1] 4!
> x!
[1] 10!

Key Programming concepts: Looping

❖ Another useful looping construct is the
While loop!

❖ keep looping until a condition is met!

❖ Useful when you don’t know what “n”
in the for 1 in to “n” is!

❖ often used in models where you are
evolving!

❖ accumulate something until a
threshold is reached (population,
energy, biomass?

Key Programming concepts: Looping

❖ A simple while loop example !

!

!

!

!

!

❖ alpha = (1+2+3+4+5+6+7+8+9+10+11+12+13+14) = 105

> !
> !
> alpha = 0!
> x = 0 !
> while (alpha < 100) { alpha = alpha + x; x = x+1}!
> x!
[1] 15!
> alpha!
[1] 105!
>

Key Programming concepts: Looping

❖ A more useful while loop example!

❖ A question: if a metal toxin in a lake increases by 1% per
year, how many years will it take for the metal level to
be greater than 30 units, if toxin is current at 5 units!

❖ there are other ways to do this, but a while loop would
do it > > !

> pollutant.level = 5!
> while (pollutant.level < 30) {!
+ pollutant.level = pollutant.level + 0.01* pollutant.level!
+ yr = yr + 1!
+ }!
>

why won’t this work?

Key Programming concepts: Looping

> yr=1!
> pollutant.level = 5!
> while (pollutant.level < 30) {!
+ pollutant.level = pollutant.level + 0.01* pollutant.level!
+ yr = yr + 1!
+ }!
> > yr!
[1] 182!
> pollutant.level!
[1] 30.2788!

Key Programming concepts: Looping

❖ Most programming languages have For and while loops

Python Programming, 1/e 36

File Loops
average5.py
Computes the average of numbers listed in a file.

def main():
 fileName = raw_input("What file are the numbers in? ")
 infile = open(fileName,'r')
 sum = 0.0
 count = 0
 for line in infile.readlines():
 sum = sum + eval(line)
 count = count + 1
 print "\nThe average of the numbers is", sum / count

mcsp.wartburg.edu/zelle/python/ppics1/.../Chapter08.p

Key Programming concepts: Control Structures
❖ if(cond) expression

> !
> a=4!
> b=10!
> if(a > b) win = "a"!
> if(b > a) win = "b"!
> win!
[1] "b"!
>

❖ ifelse(cond, true, false)
>!
> win = ifelse(a > b, "a","b")!
> win!
[1] "b"!
> !
>

Conditions:!
== equal!
> greater than!
>= greater than or equal to!
< less than!
<= less than or equal to!
%in% is in a list of something

&& AND!
|| OR!

is.null()

Key Programming concepts: Control Structures

If can also be used to choose what you return from a function
!
compute_seasonal_flow = function(str,kind) {
!
str$season = ifelse(str$month %in% c(1,2,3,10,11,12),"winter","summer")
!
tmp = subset(str, str$season=="winter")
if(kind=="mean") winter= mean(tmp$mm)
if(kind=="max") winter= max(tmp$mm)
if(kind=="min") winter=min(tmp$mm)
!
tmp = subset(str, str$season=="summer")
if(kind=="mean") summer= mean(tmp$mm)
if(kind=="max") summer= max(tmp$mm)
if(kind=="min") summer=min(tmp$mm)
!
!
return(list(summer=summer, winter=winter))
}

Key Programming concepts: Control Structures

If can also be used to choose what you return from a function

> !
> !
> compute_seasonal_flow(streamflow,"mean")!
$summer!
[1] 1.538304!
!
$winter!
[1] 0.6200728!
!
> compute_seasonal_flow(streamflow,"max")!
$summer!
[1] 23.66069!
!
$winter!
[1] 71.97168!
!

Key Programming concepts: Review of data types
!
#' compute_NPV!
#' !
#' compute net present value!
#' @param value/cost ($)!
#' @param time in the future that cost/value occurs (years)!
#' @param discount rate, default 0.01 !
#' @return value in $!
!
!
compute_NPV = function(value, time, discount=0.01) {!
!
! result=0.0!
! if (length(value) < length(time))!
! ! value = rep(value, times=length(time))!
! for (i in 1:length(time)) {!
! result = result + value[i] / (1 + discount)**time[i]!
! }!
!
! return(result)!
}!
!
!
!
!

Key Programming concepts: Review of data types

#' compute_carbon!
#'!
#' computes growth given species, and spring temperature and precipitation !
#' @param currentbiomass (mgC) !
#' @param species (name of species)!
#' @param species.parm (data frame with species, maxrate (%C/yr), topt (C), pmax
(mm), pmin(mm)!
#' @param springt (C) springtime temperature!
#' @param springp (mm) springtime rainfall !
#' @return growth (mgC/year) !
compute_carbon = function(currentbiomass, species, species.parm, springt, springp) {!
 !
 idx = match(obs.trees$species, coeff.species.growth$species)!
 growth.rate = species.parm$maxrate[idx] !
 growth.rate = growth.rate - abs(springt-species.parm$topt[idx])/20!
 peffect = (springp -species.parm$pmin[idx])/!
 (species.parm$pmin[idx]-species.parm$pmax[idx])*species.parm$maxrate[idx]!
 growth.rate = ifelse(springp < species.parm$pmin[idx], 0,!
 ifelse(springp > species.parm$pmax[idx], growth.rate,!
 growth.rate-peffect))!
 new.carbon = currentbiomass*growth.rate!
 return(new.carbon)!
}!
!

Key Programming concepts: Modules
!
!
load "stuff" in your package including R
load_all()
result = spring.summary(clim)
View(result)
!
save data for use in your R package
save(clim, file="data/clim.RData")
!
generate data
tmp = c("ponderosa","jack","white","lodgepole","douglasfir","oak")
obs.trees= list(species=sample(tmp, replace=T, size=100))
!
obs.trees$carbon = runif(min=5, max=20, n=100)
!
coeff.species.growth = data.frame(species=c("ponderosa","jack","white","lodgepole","douglasfir","oak"),
maxrate=c(1.2,1.1,1.3,1.6,1.9,1.2),
topt = c(9,7,6,5,7,12), pmax = c(300,300,300,400,600,400), pmin = c(100,200,200,250,250,100))
!
run our functions
compute_simpson_index(obs.trees$species)
compute_NPV(value=100, time=20, discount=0.01)
compute_carbon(obs.trees$carbon, obs.trees$species, coeff.species.growth, 9, 200)
!
save data for use in your R package
save(obs.trees, file="data/obstrees.RData")
save(coeff.species.growth, file=“data/coeff.species.growth.RData")
!

Key Programming concepts: Looping

❖ Loops can be “nested” - one loop inside the other!

❖ For example, if we want to calculate NPV for a range of different interest
rates and a range of damages that may be incurred 10 years in the future !

❖ using a function called compute_npv!

❖ Steps!

❖ define inputs (interest rates, damages)!

❖ define a data structure to store results!

❖ define function/model (already available)!

❖ use looping to run model for all inputs and store in data structure

Key Programming concepts: Looping

❖ Now we can start to build a more complex program!

❖ Lets say we want to figure out the benefits of a forest,
that include both carbon storage and biodiversity!

❖ Conceptual model!

❖ Implementation using our building blocks

Key Programming concepts: Looping
#' Forest Ecosystem Benefit Computer!
#'!
#' compute_ecobenefit()!
#'!
#' Computes an estimate of forest ecosystem benefits that include both biodiversity and carbon!
#' @param tree dataframe with species and current biomass !
#' @param carbonprice ($) price paid for carbon!
#' @param biodiversityprice ($) price paid for biodiversity in a given year!
#' @param paramters for growth model!
#' @param clim dataframe with tmax, tmin and precip for each day!
#' @param discount discount rates!
#' @return annual.benefit and NPV of all benefits over all years !
#' @examples!
compute_ecobenefit = function(tree, carbonprice, biodiversityprice, coeff.species.growth, clim, discount) {!
!
! spring = spring.summary(clim)!
! benefit = matrix(nrow=nrow(spring$all.springT), ncol=length(tree$species))!
! for (i in 1:nrow(spring$all.springT)) {!
! ! benefit[i,]=compute_carbon(tree$carbon,trees$species, coeff.species.growth,!
! ! spring$all.springT$x[i], spring$all.springP$precip[i])!
! ! }!
! benefit = as.data.frame(benefit)*carbonprice!
! benefit$biodiversity = compute_simpson_index(tree$species)*biodiversityprice!
! !
! annual.benefit = apply(benefit,1,sum)!
! present.benefit = compute_NPV(value=annual.benefit, time=seq(from=1,to=length(annual.benefit)),
discount)! !
 return(list(annual.benefit=annual.benefit, NPV=present.benefit))!
}!
!

Key Programming concepts: Looping

!
compute_ecobenefit(obs.trees, 20, 10, coeff.species.growth, clim, 0.01)!
compute_ecobenefit(obs.trees, 20, 10, coeff.species.growth, clim, 0.05)!
!
!

Run our more complex function - different discount rates

