A ALY L Ictxal yuulacu \Ul UUICID}.

(a) Every piece of data must have a single authoritative
representation in the system.

(b) Modularize code rather than copying and pasting.
(c) Re-use code instead of rewriting it.

5. Plan for mistakes.

(a) Add assertions to programs to check their operation.
(b) Use an off-the-shelf unit testing library.

(c) Turn bugs into test cases.

(d) Use a symbolic debugger.

6. Optimize software only after it works correctly.

(a) Use a profiler to identify bottlenecks.
(b) Write code in the highest-level language possible.

7. Document design and purpose, not mechanics.

(a) Document interfaces and reasons, not implementations.
(b) Refactor code in preference to explaming how it works.

(c) Embed the documentation for a piece of software in that
software. ilson et al., 2014)

esting and

t
re!

le that
1 code

Testing

« Wikipedia reports that in 2002, NIST study found that
software budge cost the US economy 59.5 billion

annually

Testing

+ Top 12 Reasons to Write Unit Tests - Burke and Coyner (Java
programmers)

+ http:/ /www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
+ Tests reduce bugs in new features

« Tests reduce bugs in existing features

» Tests defend agains other programmers

+ Testing forces you to slow down and think

» Testing makes development faster

+ Tests reduce fear

J7 4/

Also notes their excuse list: “my code is too simple for tests”, “writing tests is too hard” , “I
don’t have time”

Testing

« Types of testing
* DESIGN

* Does the code perform the functions that you want
it to

* Code specification - write out what you want the
code to do - IN DETAIL

+ Flow charts

Testing

“ Types of testing
+ IMPLEMENTATION
* Does the code do what you think it does

« Tricky to do this kind of testing, since if you knew
the “correct” result of the code, you won’t need the

model

+ Alternative?

Testing

+ IMPLEMENTATION

Give functions/code inputs where you know what the
answer should be

* run your data clean up code on “fake code” where
you know what to expect

* Make sure that outputs conform to known expectations
“ conservation of mass, money, energy
* positive/negative values

+ relative values

Testng

* IMPLEMENTATION

* Developers now often use software to help them
automate the testing process

* Re-uses tests - makes it efficient to repeat many tests
as you develop and modify the code

« Particularly helpful when you have multiple
modules (as in our mangrove example)

* This type of software is available for R, Python, C etc.

* In R, “testthat” library is my favorite

Error Checking

A close cousin of testing is error checking

Error checking are built-in features in functions/code

that return a message to the user if something goes
‘bad’ -

often used to make sure the input data is in the
format that the function requires

also used to return a message if something about the
data gives an NA (e.g from a divide by zero)

Testing

* There are both “formal” (coded) and “informal” just trying things
out

* Automated “formal” testing workflow

+ Design your tests

+ Code them

* Save in a format that can easily be repeated

* Run the same set of tests every time you make a change

* In “R” there is a library called “testhat” which helps you to do this

Testungin R
+ If you are in the working directory where you’ve stored the
files for your project you can use

+ need devtools and “testthat” libraries

* load_all() :runs everything in “R” subdirectory)

« document() :creates documentation

« test_dir(“name”) :runs all tests in the “name” subdirectory
(all files beginning with the word “test”

« test_file(*name”): runs all the tests in a file called “name”

Building Models: Packages in R

Main Directory (all
functions and data for a

. Rproj
(only tor
Rstudio)

Testungin R

* In R, create a new project, you will give it a directory
name;

* make sure you check “create a git repository”

+ load the “testthat” and “devtools” libraries

“ load your climate processing function

Testng

* Expectation

“ tests you can use to make sure your code is
working the way you think it should be working

* basically what you “expect” from your function
given certain input parameters

+ often used to test extreme or “bad” values or 0

Testing

+ Test

+ a single file with multiple expectations
* one per sub-function; or section of a more complicated pieces of code
+ must start with the word “test”,

e.g “test_myfunction.R”

+ Context

“ a project

+ multiple tests, stored in a directory called “tests”

#' Summary information about spring climate

4

#' computes summary information about spring temperature and precipitation

#' @param clim.data data frame with columns tmax, tmin (C)

#' rain (precip in mm), year, month (integer), day

#' @param months (as integer) to include 1in spring; default 4,5,6

#' @return returns a list containing, mean spring temperature (mean.springT, (C))
#' year with lowest spring temperature (coldest.spring (year))

#' mean spring precipitation (mean.springP (mm))

#' spring (as year) with highest precip (wettest.spring (year))

spring.summary = function(clim.data, spring.months = c(4:6)) {

spring = subset(clim.data, clim.data$month %in% spring.months)
mean.springT = mean(c(spring$tmax, spring$tmin))

lowyear = spring$year[which.min(spring$tmin)]

spring.precip = as.data.frame(matrix(nrow=unique(spring$year), ncol=2))

colnames(spring.precip)=c("precip", "year")

spring.precip = aggregate(spring$rain, by=1list(spring$year), sum)

colnames(spring.precip) = c("year","precip")
mean.spring.precip = mean(spring.precip$precip)
wettest.spring = spring.precip$year[which.max(spring.precip$precip)]

return(list(mean.springT = mean.springT, coldest.spring=lowyear,
mean.springP=mean.spring.precip,wettest.spring=wettest.spring))

Testing

* Expectation
Functional
Qutput years should be within the range of initial years

« If we give function, climate with all zeros, mean spring P
will be zero

Physical
* Mean spring P should be greater than zero

« Temperatures should be between -50 and 50

Testing

+ Expectation (built in)

« expect_that(function, equals(value))
+ expect_that(function, is_identical_to(value))

+ difference between equals and is_identical_to is that equals included
a tolerance (really really small difference OK)

« expect_that(function, matches(value))
« expect_that(function, is_true())
= expect_that(function, throws_error(string))

* You can also write your own

expect_t
expect_t
expect_t

nat(4+7, equals(11))
hat(4+7 > 10, is_true())
nat(4+7 < 10, is_true())

expect_t

expect_t
expect_t

nat(“animal”, matches(“lion”))

hat((-4)**2, throws_error())
nat(sqrt(-4), throws_error())

expect_t

hat(sqrt(-4), gives_warning())

An example test

clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,

times=4), year=rep(1,times=4),

rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))
Expectation Call to your function

expect_that(spring.summary(clim.data,

spring.months=4)$mean.springP, equals(0))

Tests that function works properly by giving it zero
raintall

An example test

test_that(“spring.summary.works” ,

{clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,
times=4), year=rep(1,times=4),

rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))

expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))
)

Put the expectations and test input data
into a single “test” with a name that says what it does
(because you may have multiple tests!)

An example test

test_that(“spring.summary.works” ,

{clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,
times=4), year=seq(from=1,to=4),

rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))

expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springT, equals(1))
expect_that(spring.summary(clim.data,
spring.months=1)$mean.springT, equals(0.5))
expect_true(spring.summary(clim.data,
spring.months=c(1:4)$coldest.spring > 2)

put multiple expectations in the test

test_that("'spring.summary.works",
{
clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1, times=4),
year=rep(1,times=4),
rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0,
times=4)))

expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springT, equals(0.5))
expect_that(spring.summary(clim.data,
spring.months=1)$mean.springT, equals(1))
expect_true(spring.summary(clim.data, spring.months=c(1:4))
$coldest.spring > 2)

D
Error: Test failed: 'spring.summary.works'

Not expected: spring.summary(clim.data, spring.months = c(1:4))
$coldest.spring > 2 isn't true.

Testing

test_dir("tests")
|

1. Failure(@test.climate.processing.R#9): spring.summary.works
spring.summary(clim.data, spring.months = c(1:4))$coldest.spring > 2 isn't
true
test_file("tests/test.climate.processing.R")

el

1. Failure(@test.climate.processing.R#9): spring.summary.works

spring.summary(clim.data, spring.months = c(1:4))$coldest.spring > 2 isn't
true

Multiple test in a file called “tests/test.climate.processing.R

—

The name of the test file must start with “test”

—

['his way R will know that these are tests, and can run them
automatically, “test_dir” will run all the tests in a directory

Imagine you have multiple functions as part of your
analysis

read.clim.data()
spring.summary/()
pop.growth()
ecosystem.vulnerability()
main()

Why Testing

With multiple people working on the R, code making
changes...automatic testing each time a change is made is
helpful

different tests tied to differ functions so you know where
the errors are

Testing workflow

» Develop your tests after you create each module
* Run them first by sourcing in R studio (to make sure original set up works)
Save as a file in the tests subdirectory

“ After you make any changes, run all your test, using test_dir

* This will also catch problems that arise when you make a change to one
subroutine /submodel and it now now longer works with another one (e.g
f you change compute_climatebased_surge so that output is in a different
format, this routine might not fail, but adaptation_comparison will

Error Checking

Other things to consider
« building error checking into your sub models

* check that input values are reasonable, if not return
and error message

* working in pairs, one person writes the code, the
other tries to break it

Error checking

spring.summary = function(clim.data, spring.months = c(4:6)) {

check to make sure data 1s 1in required format
requiredcols = c("tmax","tmin","year","month","rain")
tmp = sapply(requiredcols, match, colnames(clim.data), nomatch=0)
if (min(tmp)==0) {
return("Error: Invalid Climate Input") }
if (min(clim.data$rain < 0)) {}

return("Error: Invalid Climate Input") }
clim.data$tavg = (clim.data$tmin + clim.data$tmax)/2.0
spring = subset(clim.data, clim.data$month %in% spring.months)
mean.springT = mean(c(spring$tmax, spring$tmin))
lowyear = spring$year[which.min(spring$tavg)l]....

We can also add this to our tests

Testing

« Testing levels
Unit testing (your individual subroutine)

« Integration testing (testing the situations where one
submodule call another)

« Component interface or data passing testing (test
format of outputs)

« System testing (testing the whole model)

« Some of these can be done by “testthat” routines, but you
can also have informal system testing; or write checks
into your code for component interface testing

