
Software Best Practices: Testing and
Version Control

❖ Testing is a key best
practice in modeling!

❖ Applies to both code that
you are writing and code
that you are using!

❖ Incremental changes:
multiple authors - is
facilitated by “version
control”

Wilson et al., 2014)

Testing

❖ Wikipedia reports that in 2002, NIST study found that
software budge cost the US economy 59.5 billion
annually

Testing

❖ Top 12 Reasons to Write Unit Tests - Burke and Coyner (Java
programmers)!

❖ http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html!

❖ Tests reduce bugs in new features!

❖ Tests reduce bugs in existing features!

❖ Tests defend agains other programmers!

❖ Testing forces you to slow down and think!

❖ Testing makes development faster!

❖ Tests reduce fear

Also notes their excuse list: “my code is too simple for tests”, “writing tests is too hard” , “I
don’t have time”

Testing

❖ Types of testing!

❖ DESIGN !

❖ Does the code perform the functions that you want
it to!

❖ Code specification - write out what you want the
code to do - IN DETAIL!

❖ Flow charts

Testing

❖ Types of testing!

❖ IMPLEMENTATION!

❖ Does the code do what you think it does!

❖ Tricky to do this kind of testing, since if you knew
the “correct” result of the code, you won’t need the
model!

❖ Alternative?

Testing

❖ IMPLEMENTATION!

❖ Give functions/code inputs where you know what the
answer should be !

❖ run your data clean up code on “fake code” where
you know what to expect!

❖ Make sure that outputs conform to known expectations!

❖ conservation of mass, money, energy!

❖ positive/negative values!

❖ relative values

Testing

❖ IMPLEMENTATION!

❖ Developers now often use software to help them
automate the testing process!

❖ Re-uses tests - makes it efficient to repeat many tests
as you develop and modify the code!

❖ Particularly helpful when you have multiple
modules (as in our mangrove example)!

❖ This type of software is available for R, Python, C etc.!

❖ In R, “testthat” library is my favorite

Error Checking

❖ A close cousin of testing is error checking!

❖ Error checking are built-in features in functions/code
that return a message to the user if something goes
‘bad’ - !

❖ often used to make sure the input data is in the
format that the function requires!

❖ also used to return a message if something about the
data gives an NA (e.g from a divide by zero)

Testing

❖ There are both “formal” (coded) and “informal” just trying things
out!

❖ Automated “formal” testing workflow!

❖ Design your tests!

❖ Code them!

❖ Save in a format that can easily be repeated !

❖ Run the same set of tests every time you make a change!

❖ In “R” there is a library called “testhat” which helps you to do this

Testing in R

❖ If you are in the working directory where you’ve stored the
files for your project you can use!

❖ need devtools and “testthat” libraries!

❖ load_all() :runs everything in “R” subdirectory)!

❖ document() :creates documentation!

❖ test_dir(“name”) :runs all tests in the “name” subdirectory
(all files beginning with the word “test”!

❖ test_file(“name”): runs all the tests in a file called “name”

 Building Models: Packages in R

Main Directory (all
functions and data for a

Man R
*.Rproj!

(only for
Rstudio)

Tests

Testing in R

❖ In R, create a new project, you will give it a directory
name; !

❖ make sure you check “create a git repository”!

❖ load the “testthat” and “devtools” libraries!

❖ load your climate processing function

Testing

❖ Expectation!

❖ tests you can use to make sure your code is
working the way you think it should be working!

❖ basically what you “expect” from your function
given certain input parameters!

❖ often used to test extreme or “bad” values or 0

Testing

❖ Test !

❖ a single file with multiple expectations!

❖ one per sub-function; or section of a more complicated pieces of code!

❖ must start with the word “test”,!

❖ e.g “test_myfunction.R” !

!

❖ Context!

❖ a project!

❖ multiple tests, stored in a directory called “tests”

#' Summary information about spring climate	
#'	
#' computes summary information about spring temperature and precipitation	
#' @param clim.data data frame with columns tmax, tmin (C)	
#'	rain (precip in mm), year, month (integer), day	
#' @param months (as integer) to include in spring; default 4,5,6	
#' @return returns a list containing, mean spring temperature (mean.springT, (C))	
#' year with lowest spring temperature (coldest.spring (year))	
#' mean spring precipitation (mean.springP (mm))	
#' spring (as year) with highest precip (wettest.spring (year))	
!
!
spring.summary = function(clim.data, spring.months = c(4:6)) {	
 	
 spring = subset(clim.data, clim.data$month %in% spring.months)	
 mean.springT = mean(c(spring$tmax, spring$tmin))	
 lowyear = spring$year[which.min(spring$tmin)]	
 spring.precip = as.data.frame(matrix(nrow=unique(spring$year), ncol=2))	
 colnames(spring.precip)=c("precip","year")	
 	
 spring.precip = aggregate(spring$rain, by=list(spring$year), sum)	
		
 	
 colnames(spring.precip) = c("year","precip") 	
		 mean.spring.precip = mean(spring.precip$precip)	
 wettest.spring = spring.precip$year[which.max(spring.precip$precip)]	
 	
 return(list(mean.springT = mean.springT, coldest.spring=lowyear, 	
 mean.springP=mean.spring.precip,wettest.spring=wettest.spring))	
}	

Testing

❖ Expectation!

Functional!

❖ Output years should be within the range of initial years!

❖ If we give function, climate with all zeros, mean spring P
will be zero!

Physical!

❖ Mean spring P should be greater than zero!

❖ Temperatures should be between -50 and 50

Testing

❖ Expectation (built in)!

❖ expect_that(function, equals(value))!

❖ expect_that(function, is_identical_to(value))!

❖ difference between equals and is_identical_to is that equals included
a tolerance (really really small difference OK)!

❖ expect_that(function, matches(value))!

❖ expect_that(function, is_true())!

❖ expect_that(function, throws_error(string))!

❖ You can also write your own

Using expect thatexpect_that(4+7, equals(11))!
expect_that(4+7 > 10, is_true())!
expect_that(4+7 < 10, is_true())!
expect_that(“animal”, matches(“lion”))!
!
expect_that((-4)**2, throws_error())!
expect_that(sqrt(-4), throws_error())!
expect_that(sqrt(-4), gives_warning())

An example test

clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,
times=4), year=rep(1,times=4), !
rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))!
!
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))

Expectation Call to your function

Tests that function works properly by giving it zero
rainfall

An example test

test_that(“spring.summary.works” ,!
{clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,
times=4), year=rep(1,times=4), !
rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))!
!
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))!
})

Put the expectations and test input data!
into a single “test” with a name that says what it does!
(because you may have multiple tests!)

An example test
test_that(“spring.summary.works” ,!
{clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1,
times=4), year=seq(from=1,to=4), !
rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0, times=4)))!
!
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))!
expect_that(spring.summary(clim.data,
spring.months=4)$mean.springT, equals(1))!
expect_that(spring.summary(clim.data,
spring.months=1)$mean.springT, equals(0.5))!
expect_true(spring.summary(clim.data, !
spring.months=c(1:4)$coldest.spring > 2)!
!
})

!

put multiple expectations in the test

Testing
test_that("spring.summary.works" ,!
{!
 clim.data = as.data.frame(cbind(month=c(1:4), day=rep(1, times=4),
year=rep(1,times=4), !
 rain=rep(0, times=4), tmax=c(2,2,1,1), tmin=rep(0,
times=4)))!
 !
 expect_that(spring.summary(clim.data,
spring.months=4)$mean.springP, equals(0))!
 expect_that(spring.summary(clim.data,
spring.months=4)$mean.springT, equals(0.5))!
 expect_that(spring.summary(clim.data,
spring.months=1)$mean.springT, equals(1))!
 expect_true(spring.summary(clim.data, spring.months=c(1:4))
$coldest.spring > 2) !
})!
Error: Test failed: 'spring.summary.works'!
Not expected: spring.summary(clim.data, spring.months = c(1:4))
$coldest.spring > 2 isn't true.

Testing
test_dir("tests")
...1
!
1. Failure(@test.climate.processing.R#9): spring.summary.works

spring.summary(clim.data, spring.months = c(1:4))$coldest.spring > 2 isn't
true
test_file("tests/test.climate.processing.R")
...1
!
1. Failure(@test.climate.processing.R#9): spring.summary.works

spring.summary(clim.data, spring.months = c(1:4))$coldest.spring > 2 isn't
true
!

Multiple test in a file called “tests/test.climate.processing.R!
!
The name of the test file must start with “test” !
This way R will know that these are tests, and can run them
automatically, “test_dir” will run all the tests in a directory!

Why Testing

Imagine you have multiple functions as part of your
analysis!
!

read.clim.data()!
spring.summary()!
pop.growth()!
ecosystem.vulnerability()!
main()!
!

With multiple people working on the R, code making
changes…automatic testing each time a change is made is
helpful!
different tests tied to differ functions so you know where
the errors are!

Testing workflow

❖ Develop your tests after you create each module!

❖ Run them first by sourcing in R studio (to make sure original set up works)!

❖ Save as a file in the tests subdirectory!

❖ After you make any changes, run all your test, using test_dir!

!

❖ This will also catch problems that arise when you make a change to one
subroutine/submodel and it now now longer works with another one (e.g
f you change compute_climatebased_surge so that output is in a different
format, this routine might not fail, but adaptation_comparison will

Error Checking

❖ Other things to consider!

❖ building error checking into your sub models!

❖ check that input values are reasonable, if not return
and error message!

❖ working in pairs, one person writes the code, the
other tries to break it

Error checking
spring.summary = function(clim.data, spring.months = c(4:6)) {

 # check to make sure data is in required format
 requiredcols = c("tmax","tmin","year","month","rain")
 tmp = sapply(requiredcols, match, colnames(clim.data), nomatch=0)
 if (min(tmp)==0) {
 return("Error: Invalid Climate Input") }
 if (min(clim.data$rain < 0)) {}
 return("Error: Invalid Climate Input") }
 clim.data$tavg = (clim.data$tmin + clim.data$tmax)/2.0
 spring = subset(clim.data, clim.data$month %in% spring.months)
 mean.springT = mean(c(spring$tmax, spring$tmin))
 lowyear = spring$year[which.min(spring$tavg)]…..

We can also add this to our tests

Testing

❖ Testing levels!

❖ Unit testing (your individual subroutine)!

❖ Integration testing (testing the situations where one
submodule call another)!

❖ Component interface or data passing testing (test
format of outputs)!

❖ System testing (testing the whole model)!

❖ Some of these can be done by “testthat” routines, but you
can also have informal system testing; or write checks
into your code for component interface testing

